ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
D. Moghul, J. C. Luxat
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 104-118
Technical Paper | doi.org/10.1080/00295450.2018.1515411
Articles are hosted by Taylor and Francis Online.
Experimental studies of thermal interactions of cold liquid droplets impinging on metal surfaces have been performed and the result of these studies are summarized in this paper. In these experiments rapid, energetic (explosive) breakup of the liquid drops were observed using high-speed video camera recordings. These energetic interactions occurred over a range of high temperatures of the metal surfaces and varied with the type of metal employed. Three metals were used in the study, namely, copper, brass, and stainless steel. The test sections included curved-plate (sections machined from metal cylinders) and flat-plate geometries. The choice of metals was determined by the objective of establishing the influence of thermal diffusivity of the hot material on the thermal interaction between the cold liquid droplet and the hot metal surface, and the two metal surface geometries were used to study the influence of droplet spreading behavior after impact with the hot metal surface. Metal surface temperatures ranged from 30°C to 700°C and controlled single water droplets at a temperature of 25°C were released from a specially designed rig employing a small fast–opening/closing solenoid valve. Experimental results are presented in this paper that demonstrate the processes that occur during the interaction of the droplet with the hot metal surface during a time frame of 1 to 20 ms.