ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Chan Eok Park, Jong Ho Choi, Gyu Cheon Lee, Sang Yong Lee
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 77-93
Technical Paper | doi.org/10.1080/00295450.2018.1501990
Articles are hosted by Taylor and Francis Online.
The system thermal-hydraulic code SPACE adopts a multidimensional two-fluid, three-field model to simulate two-phase-flow phenomena encountered during various anticipated transients and postulated accidents of pressurized water reactors. The applicable mesh systems include structured/staggered and unstructured/collocated ones. The staggered mesh system is based on the orthogonal hexahedral shape of cells and their surrounding faces, but it is generalized to describe not only multidimensional Cartesian meshes but also cylindrical meshes and one-dimensional pipe flow networks. The unstructured/collocated mesh system is used to represent more complex geometry using hexahedron, tetrahedron, pyramid, or prism shapes of cells. The structured/staggered mesh system hydraulic solver and the unstructured/collocated mesh system hydraulic solver are merged into a unified version of SPACE so that those hydraulic solvers can analyze simultaneously a complicated system comprising several structured and unstructured mesh blocks. In this paper, the governing equations, mesh systems, and numerical formulations for SPACE are introduced, and the application results are presented for several conceptual problems including the connection of heterogeneous mesh blocks.