ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Bin Han, Bao-Wen Yang, Cen Wei, Yudong Zha
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 68-76
Technical Paper | doi.org/10.1080/00295450.2018.1506658
Articles are hosted by Taylor and Francis Online.
The spacer grid is one of the most important parts of a fuel assembly for enhancing thermal-hydraulic performance. The mixing vane is a critical component of the spacer grid (or mixing vane grid) to produce lateral flow, turbulence, vortex, and other mixing mechanisms downstream of the grid. The design and arrangement of mixing vanes could influence the flow condition downstream, especially the lateral flow and vortex surrounding the rod bundle, which directly affect not only the hydraulics and heat transfer but also the critical heat flux. Understanding fundamental mixing characteristics is of great importance for fuel assembly design. Instead of using complicated geometries, this paper studies the lateral flow velocity and vortex in a simple 2 × 1 channel with a spacer grid in order to obtain the behavior of a single mixing vane and its effect on the downstream lateral velocity and vortex. Then, the effect of mixing vane arrangements on pressure drop is studied by researching the lateral velocity and vortex in the 2 × 1 channel with two mixing vanes. Several indexes that could reflect the mixing characteristics, such as lateral velocity and vortex, are introduced to assess the performance of the mixing vanes. Because of the presence of walls in both the experiment and the simulation, the lateral flow will reflect upon the impact of the obstruction walls or rods, which would cause vortex rotation. Rotation time and flow pattern are also studied in this paper. Qualitative and quantitative analyses are carried out to obtain the lateral velocity, the vortex angle, and its period of rotation. This work may be applied to the design and optimization of mixing vanes.