ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Wei Ding, Eckhard Krepper, Uwe Hampel
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 23-32
Technical Paper | doi.org/10.1080/00295450.2018.1496693
Articles are hosted by Taylor and Francis Online.
In this work, we report on the development of a time-averaged Eulerian multiphase approach applied in the wall boiling process especially in the forced convective boiling process. Recently, in order to obtain accurate bubble dynamics and reduce case dependency, a single bubble model for nucleate boiling based on known published models was developed. The model considers geometry change and dynamic contact and inclination angles during bubble growth. The model has good agreement with experiments. However, the predicted bubble dynamics is dependent on the wall superheat (cavity activation temperature). This single bubble model requires an update of the current nucleation site activation and heat flux partitioning models in time-averaged Eulerian multiphase approaches. In this work, we will introduce this implementation in detail. Further, with help of the MUSIG (MUltiple SIze Group) model and a breakup and coalescence model, the time-averaged Eulerian approach could simulate the bubble size distribution in a heated pipe. With the necessary calibration of the nucleation site density, the comparisons between the calculation results and Bartolomei et al.’s experiments demonstrate the success of the implementation and the accuracy of this approach.