ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Emilio Baglietto, Etienne Demarly, Ravikishore Kommajosyula, Nazar Lubchenko, Ben Magolan, Rosie Sugrue
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 1-22
Technical Paper | doi.org/10.1080/00295450.2018.1517528
Articles are hosted by Taylor and Francis Online.
Building on the strong belief that the advancement and consistent adoption of cutting-edge simulation tools is critical to the future of nuclear power, three-dimensional thermal-hydraulic methods in the form of computational fluid dynamics (CFD) have made enormous advancement and promise to transform the way we approach the design of more efficient and reliable systems. The success of these methods hinges on the accuracy and predictive ability of the underlying models, which must, at the same time, limit the computational cost and allow optimal scalability. A large effort at the Massachusetts Institute of Technology has been devoted to the development of a second-generation of multiphase-CFD (M-CFD) closures and to leveraging the continuous progression in the experimental techniques. Among the numerous objectives, the central challenge that has driven the overall approach is the prediction of departure from nucleate boiling. This work focuses on deriving the fundamental meso-scale mechanisms from the CFD-grade experiments and incorporates them in the M-CFD framework as subgrid-scale models. A more complete representation of lateral lift force and near-wall effects are proposed, in combination with direct numerical simulation–driven understanding of bubble-induced turbulence effects. The improved description of the multiphase flow distribution is coupled to a novel representation of boiling heat transfer, which aims at introducing all the physical mechanisms that are encountered at the boiling surface. Starting from the improved representation at the wall, this work concentrates on the micro-hydrodynamics of the thin liquid film on the heated surface, which governs the critical heat flux limit.