ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Changyeon Yoon, Wonho Lee
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 386-395
Technical Paper | doi.org/10.1080/00295450.2018.1493318
Articles are hosted by Taylor and Francis Online.
Performance of Compton positron emission tomography (PET) is studied in this paper using qualitative and quantitative methods. Lutetium-yttrium oxyorthosilicate (LYSO), lutetium-gadolinium oxyorthosilicate (LGSO), and CdZnTe (CZT) materials are used for Compton PET. LYSO is widely used for conventional PET, and LGSO is a prospective scintillator material for PET detectors. CZT is one of the semiconductor materials that have high energy and position resolution. For conventional PET, only the photoelectric effect is considered a valid interaction for image reconstruction. However, Compton scattering tracing technology is applied for our Compton PET to additionally use Compton scattering events for image reconstruction. It is relatively difficult to use multiple layers for PET made of scintillators, as electronic circuits must be attached to each layer. For this reason, conventional PET generally uses only one layer for each detector module and limits the spatial resolution in the depth direction. In contrast, it is possible for a CZT detector to measure a depth of interest based on the cathode-to-anode signal ratio or electron drift time with relatively simple electronic circuits. Furthermore, CZT materials have high spatial and energy resolutions. Therefore, the position and energy information of the radiation interactions in the detector module can be precisely calculated to determine the interaction sequence, and hence, the information from the Compton scattering can be used for image reconstruction in PET. For this reason, the reconstructed image of CZT PET can show better quality than those of scintillator PETs. The detection efficiency and quality of the reconstructed image are significantly increased by including the Compton scattering effect as a valid interaction process for image reconstruction because Compton scattering has twice the interaction probability of the photoelectric effect at 511 keV. In this paper, the effectiveness of including Compton scattering events for PET reconstruction was evaluated for scintillators and CZT semiconductor detectors. The maximum likelihood expectation and maximization reconstruction method was applied for conventional and Compton PET reconstruction, and the qualities of the reconstructed images were evaluated.