ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Trump picks former N.Y. congressman for NNSA administrator
Williams
President Trump has selected Brandon Williams to head the Department of Energy’s National Nuclear Security Administration, pending confirmation by the U.S. Senate.
Williams is a former one-term congressman (R., N.Y.),from 2023 to the beginning of 2025. Prior to political office he served in the U.S. Navy. Williams’s run for office gained attention in 2022 when he defeated fellow navy veteran Francis Conole, a Democrat, but he lost the seat last November to Democrat John Mannion.
“I will be honored to lead the tremendous scientific and engineering talent at NNSA,” Williams said, thanking Trump, according to WSYR-TV in Syracuse, N.Y.
Changyeon Yoon, Wonho Lee
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 386-395
Technical Paper | doi.org/10.1080/00295450.2018.1493318
Articles are hosted by Taylor and Francis Online.
Performance of Compton positron emission tomography (PET) is studied in this paper using qualitative and quantitative methods. Lutetium-yttrium oxyorthosilicate (LYSO), lutetium-gadolinium oxyorthosilicate (LGSO), and CdZnTe (CZT) materials are used for Compton PET. LYSO is widely used for conventional PET, and LGSO is a prospective scintillator material for PET detectors. CZT is one of the semiconductor materials that have high energy and position resolution. For conventional PET, only the photoelectric effect is considered a valid interaction for image reconstruction. However, Compton scattering tracing technology is applied for our Compton PET to additionally use Compton scattering events for image reconstruction. It is relatively difficult to use multiple layers for PET made of scintillators, as electronic circuits must be attached to each layer. For this reason, conventional PET generally uses only one layer for each detector module and limits the spatial resolution in the depth direction. In contrast, it is possible for a CZT detector to measure a depth of interest based on the cathode-to-anode signal ratio or electron drift time with relatively simple electronic circuits. Furthermore, CZT materials have high spatial and energy resolutions. Therefore, the position and energy information of the radiation interactions in the detector module can be precisely calculated to determine the interaction sequence, and hence, the information from the Compton scattering can be used for image reconstruction in PET. For this reason, the reconstructed image of CZT PET can show better quality than those of scintillator PETs. The detection efficiency and quality of the reconstructed image are significantly increased by including the Compton scattering effect as a valid interaction process for image reconstruction because Compton scattering has twice the interaction probability of the photoelectric effect at 511 keV. In this paper, the effectiveness of including Compton scattering events for PET reconstruction was evaluated for scintillators and CZT semiconductor detectors. The maximum likelihood expectation and maximization reconstruction method was applied for conventional and Compton PET reconstruction, and the qualities of the reconstructed images were evaluated.