ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Yongwei Chen, Zeyong Zhang, Dong Li
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 378-385
Technical Paper | doi.org/10.1080/00295450.2018.1477394
Articles are hosted by Taylor and Francis Online.
To effectively reduce the probability of instrumentation and control (I&C) equipment aging failures in nuclear power plants, a preventive replacement aging treatment strategy should be adopted. A single failure–oriented and component aging sensitivity classification model is put forward to classify I&C equipment aging in nuclear power plants, and three methods for assessing I&C equipment life cycles (i.e., aging tests, standards and specifications, and failure data) are provided. Meanwhile, provided with the characteristic curves of I&C equipment aging failures in nuclear power plants, specific aging treatment steps are put forward, including (1) defining the scope of aging treatment in horizontal and longitudinal dimensions of signal flow direction and equipment composition; (2) determining the aging treatment implementation cycle by a life cycle margin setting method; (3) refining the aging treatment implementation process by division of four stages, namely, aged equipment classification, aging data management, aging treatment implementation, and aging testing feedback, to ensure reliable and safe operation of I&C equipment in nuclear power plants.