ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
DOE opens funding opportunity for HALEU transport packages
The Department of Energy announced November 19 that up to $16 million is available through a new High-Assay Low-Enrichment Transportation Package funding opportunity to research, develop, and acquire Nuclear Regulatory Commission licensing for transportation of HALEU—using new or modified packages.
Eva Brayfindley, Ralph C. Smith, John Mattingly, Robert Brigantic
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 343-353
Technical Paper | doi.org/10.1080/00295450.2018.1490123
Articles are hosted by Taylor and Francis Online.
Spent fuel monitoring and characterization has been central to safeguards and nuclear facility monitoring for many years. The Digital Cerenkov Viewing Device (DCVD) has been used since the 1980s as a method of defect detection in spent fuel. In recent years, the accounting for large quantities of spent fuel before storage has renewed interest in this relatively quick and inexpensive method. This has an impact not only in safeguards, but also for nuclear power facilities, as accounting can be a long, arduous, and costly process. Additionally, the DCVD demonstrates limited accuracy in more complex cases such as substitution of a fuel rod with steel or a partial defect detection. A second method, gamma emission tomography (GET) has been explored as an improved defect detection method, but is much more expensive and invasive than DCVD. The present investigation identifies deficiencies in both methods and proposes a combination of data gathered from each method to address these deficiencies for improved spent fuel characterization. Initial results are promising, showing 97% detection of a single missing fuel rod when the data types are combined, versus approximately 50% and 70%, respectively, for DCVD and GET data on their own. These classification results are obtained with algorithms derived from facial recognition and applied to this problem, yielding unique accuracy in near real time while also maintaining the information barrier between output and measurement desired in safeguards.