ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Dong Hun Lee, Seungjin Kim, Han Young Yoon, Jae Jun Jeong
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 330-342
Technical Paper | doi.org/10.1080/00295450.2018.1475193
Articles are hosted by Taylor and Francis Online.
Two-phase flow in a horizontal pipe has a pronounced feature; that is, two-phase-flow parameters are highly nonsymmetric because gravity is perpendicular to the mean flow direction. Thus, three-dimensional analysis is necessary for the accurate prediction of two-phase flow in a horizontal pipe, such as the hot leg and cold leg of a pressurized water reactor and the pressure tubes in a CANDU reactor. In this study, we simulated bubbly flows in horizontal pipes using the CUPID code, which adopts a two-fluid, three-field model for two-phase flow. In the preliminary calculations, it was found that the particle-averaged two-fluid momentum equation, rather than the standard two-fluid momentum equation, predicts a physically reasonable slip ratio and nondrag forces, except turbulent dispersion forces have negligible effects on the radial void distribution when the particle-averaged two-fluid momentum equation is used. Based on the results, we selected the physical models and computational mesh for subsequent code assessment using various bubbly flow experiments in horizontal pipes. The turbulent dispersion force model was improved to take into account the large void fraction change at the top. The results of the code assessment show good predictions for the axial pressure drop, liquid velocity, and turbulent kinetic energy profile and predict reasonably well the effects of jl and jg on two-phase-flow parameters. However, additional studies are needed for more accurate prediction of the nonsymmetric distribution of gas velocity and turbulent kinetic energy.