ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Dong Hun Lee, Seungjin Kim, Han Young Yoon, Jae Jun Jeong
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 330-342
Technical Paper | doi.org/10.1080/00295450.2018.1475193
Articles are hosted by Taylor and Francis Online.
Two-phase flow in a horizontal pipe has a pronounced feature; that is, two-phase-flow parameters are highly nonsymmetric because gravity is perpendicular to the mean flow direction. Thus, three-dimensional analysis is necessary for the accurate prediction of two-phase flow in a horizontal pipe, such as the hot leg and cold leg of a pressurized water reactor and the pressure tubes in a CANDU reactor. In this study, we simulated bubbly flows in horizontal pipes using the CUPID code, which adopts a two-fluid, three-field model for two-phase flow. In the preliminary calculations, it was found that the particle-averaged two-fluid momentum equation, rather than the standard two-fluid momentum equation, predicts a physically reasonable slip ratio and nondrag forces, except turbulent dispersion forces have negligible effects on the radial void distribution when the particle-averaged two-fluid momentum equation is used. Based on the results, we selected the physical models and computational mesh for subsequent code assessment using various bubbly flow experiments in horizontal pipes. The turbulent dispersion force model was improved to take into account the large void fraction change at the top. The results of the code assessment show good predictions for the axial pressure drop, liquid velocity, and turbulent kinetic energy profile and predict reasonably well the effects of jl and jg on two-phase-flow parameters. However, additional studies are needed for more accurate prediction of the nonsymmetric distribution of gas velocity and turbulent kinetic energy.