ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Amir Ali, Kerry J. Howe, Edward D. Blandford
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 318-329
Technical Paper | doi.org/10.1080/00295450.2018.1480212
Articles are hosted by Taylor and Francis Online.
A series of experiments on vertical head loss modules or columns to measure conventional and chemical head loss was carried out to support the resolution of Generic Safety Issue 191 for the Vogtle nuclear power plant (NPP). The head loss (conventional and chemical) was measured on multi-constituent fibrous debris beds of different particulate-to-fiber ratios (η). The debris beds were generated on a horizontal screen following the new procedure developed at the University of New Mexico and are summarized herein. The generated debris beds have been shown to produce repeatable and stable conventional head loss (CHL) and have the ability to detect chemical surrogates. Prototypical Vogtle NPP containment debris materials were used to form three different particulate-to-fiber–ratio (η) debris beds: 6.89 (thin bed), 2 (intermediate bed), and 1.15 (thick bed). The particulates were presented as 90% epoxy paint, 5% inorganic zinc, and 5% latent debris dirt by mass. The obtained results show that the measured CHL increased as the particulate mass increased in the debris beds. The average measured CHL values were 9.37, 6.4, and 5.66 H2O'' for η = 1.15, 2, and 6.89 debris beds, respectively. The debris beds with η = 2 and 1.15 were selected for the chemical head loss experiments.
Standard aluminum (Al) chemical precipitates with specific batches were introduced to the head loss columns, and chemical head loss was measured. Precipitates prepared following the WCAP-16530-NP-A procedure [Lane et al., WCAP-16530-NP-A, “Evaluation of Post-Accident Chemical Effects in Containment Sump Fluids to Support GSI-191,” Westinghouse Electric Company (2008)] or formed in situ by injecting metal salts under two different rates (0.75 and 7.5 mL/min) were tested. The results show that the thin debris bed (~10 mm) was more sensitive to the chemical precipitates prepared following the WCAP procedure compared to the intermediate debris bed (~25 mm) and thick debris bed (~55 mm). The measured chemical head loss was 0.35, 0.1, and 0.02 H2O''/mg of Al filtered by the debris beds. The in situ injection method has shown higher measured chemical head loss per unit mass of filtered precipitates than the WCAP surrogates for the debris beds of η = 2 (intermediate bed) and 1.15 (thick bed). Also, the results show a nonconclusive effect on the injection rate of metal salt to form in situ chemical precipitates on the measured chemical head loss.