ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Nicolas Shugart, Benjamin Johnson, Jeffrey King, Alexandra Newman
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 260-282
Technical Paper | doi.org/10.1080/00295450.2018.1478056
Articles are hosted by Taylor and Francis Online.
The ability to create nuclear weapons from 235U and 239Pu makes it imperative to closely account for these materials as they progress through a nuclear fuel cycle. Improved measurement systems provide more accurate estimates of material quantities and material unaccounted for (MUF). This paper provides examples of how two safeguards computational toolboxes can optimize and analyze hypothetical nuclear fuel cycle scenarios. The NUclear Measurement System Optimization (NUMSO) toolbox uses operations research techniques to find optimal solutions to safeguards measurement problems based on minimizing the variance of the estimated MUF. The SafeGuards Analysis (SGA) toolbox employs Monte Carlo techniques to analyze a given configuration of measurement methods and material flows to determine the probabilities of Type I (false detection) and Type II (missed detection) errors. Applying these toolboxes to a realistic fuel cycle scenario demonstrates the capability of NUMSO and SGA to address nuclear safeguards problems. Working in tandem, both toolboxes are able to determine how to quickly improve upon an existing safeguards measurement system and to calculate the resulting improvement in the error probabilities of the system. This information shows engineers not only how to develop new measurement systems but also how to improve existing systems in the most efficient manner.