ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Nicolas Shugart, Benjamin Johnson, Jeffrey King, Alexandra Newman
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 260-282
Technical Paper | doi.org/10.1080/00295450.2018.1478056
Articles are hosted by Taylor and Francis Online.
The ability to create nuclear weapons from 235U and 239Pu makes it imperative to closely account for these materials as they progress through a nuclear fuel cycle. Improved measurement systems provide more accurate estimates of material quantities and material unaccounted for (MUF). This paper provides examples of how two safeguards computational toolboxes can optimize and analyze hypothetical nuclear fuel cycle scenarios. The NUclear Measurement System Optimization (NUMSO) toolbox uses operations research techniques to find optimal solutions to safeguards measurement problems based on minimizing the variance of the estimated MUF. The SafeGuards Analysis (SGA) toolbox employs Monte Carlo techniques to analyze a given configuration of measurement methods and material flows to determine the probabilities of Type I (false detection) and Type II (missed detection) errors. Applying these toolboxes to a realistic fuel cycle scenario demonstrates the capability of NUMSO and SGA to address nuclear safeguards problems. Working in tandem, both toolboxes are able to determine how to quickly improve upon an existing safeguards measurement system and to calculate the resulting improvement in the error probabilities of the system. This information shows engineers not only how to develop new measurement systems but also how to improve existing systems in the most efficient manner.