ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Nicolas Shugart, Benjamin Johnson, Jeffrey King, Alexandra Newman
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 260-282
Technical Paper | doi.org/10.1080/00295450.2018.1478056
Articles are hosted by Taylor and Francis Online.
The ability to create nuclear weapons from 235U and 239Pu makes it imperative to closely account for these materials as they progress through a nuclear fuel cycle. Improved measurement systems provide more accurate estimates of material quantities and material unaccounted for (MUF). This paper provides examples of how two safeguards computational toolboxes can optimize and analyze hypothetical nuclear fuel cycle scenarios. The NUclear Measurement System Optimization (NUMSO) toolbox uses operations research techniques to find optimal solutions to safeguards measurement problems based on minimizing the variance of the estimated MUF. The SafeGuards Analysis (SGA) toolbox employs Monte Carlo techniques to analyze a given configuration of measurement methods and material flows to determine the probabilities of Type I (false detection) and Type II (missed detection) errors. Applying these toolboxes to a realistic fuel cycle scenario demonstrates the capability of NUMSO and SGA to address nuclear safeguards problems. Working in tandem, both toolboxes are able to determine how to quickly improve upon an existing safeguards measurement system and to calculate the resulting improvement in the error probabilities of the system. This information shows engineers not only how to develop new measurement systems but also how to improve existing systems in the most efficient manner.