ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Emma K. Redfoot, R. A. Borrelli
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 249-259
Technical Paper | doi.org/10.1080/00295450.2018.1478590
Articles are hosted by Taylor and Francis Online.
Growing concerns over the impact of fossil fuels on climate change have driven efforts to find sources of energy with low emissions. In response, fluctuating renewable energy sources, such as solar and wind power, are growing to meet more of the electricity demand. However, maintaining reliable energy accessibility to the grid requires a stable, nonfluctuating source of power. Nuclear power plants (NPPs) provide nearly emissions-free, reliable energy to the grid (refer to “IPCC Fifth Assessment Report,” Intergovernmental Panel on Climate Change; https://www.ipcc.ch/report/ar5/). To best reduce reliance on fossil fuels while ensuring reliable energy generation and profitability, nuclear renewable hybrid energy systems (NRHESs) focus on tightly coupling renewable generation with a NPP by colocating the generation sources in an industrial park. The industrial park consists of at least the NPP, the renewable energy source, and some form of industrial process that consumes the energy not used by the grid. In this paper, we analyze the computational modeling approaches currently being pursued for NRHESs. We further investigate similarities between nuclear fuel cycle simulators (NFCSs) and NRHESs to determine how NRHES development can benefit from the development of NFCSs. This paper begins by reviewing past research on NRHESs to determine the necessary functionality of modeling software. After determining the necessary software capabilities for an NRHES model, we discuss the characteristics of a NFCS. The characteristics found common to both systems include desirability of a flexible modular design; open source; ability to be coupled to external pieces of software, including economic modeling, optimization methods, and sensitivity analysis; and results that are usable to technical and nontechnical people alike.