ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Emma K. Redfoot, R. A. Borrelli
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 249-259
Technical Paper | doi.org/10.1080/00295450.2018.1478590
Articles are hosted by Taylor and Francis Online.
Growing concerns over the impact of fossil fuels on climate change have driven efforts to find sources of energy with low emissions. In response, fluctuating renewable energy sources, such as solar and wind power, are growing to meet more of the electricity demand. However, maintaining reliable energy accessibility to the grid requires a stable, nonfluctuating source of power. Nuclear power plants (NPPs) provide nearly emissions-free, reliable energy to the grid (refer to “IPCC Fifth Assessment Report,” Intergovernmental Panel on Climate Change; https://www.ipcc.ch/report/ar5/). To best reduce reliance on fossil fuels while ensuring reliable energy generation and profitability, nuclear renewable hybrid energy systems (NRHESs) focus on tightly coupling renewable generation with a NPP by colocating the generation sources in an industrial park. The industrial park consists of at least the NPP, the renewable energy source, and some form of industrial process that consumes the energy not used by the grid. In this paper, we analyze the computational modeling approaches currently being pursued for NRHESs. We further investigate similarities between nuclear fuel cycle simulators (NFCSs) and NRHESs to determine how NRHES development can benefit from the development of NFCSs. This paper begins by reviewing past research on NRHESs to determine the necessary functionality of modeling software. After determining the necessary software capabilities for an NRHES model, we discuss the characteristics of a NFCS. The characteristics found common to both systems include desirability of a flexible modular design; open source; ability to be coupled to external pieces of software, including economic modeling, optimization methods, and sensitivity analysis; and results that are usable to technical and nontechnical people alike.