ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
About Studsvik Scandpower
Studsvik Scandpower (SSP) is the leading global provider of vendor-independent, state-of-the-art nuclear fuel management software and world-class engineering services. SSP offers a full suite of software product offerings, training, and engineering services, to support operating utilities, fuel vendors, safety authorities, and research organizations around the world.
Emma K. Redfoot, R. A. Borrelli
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 249-259
Technical Paper | doi.org/10.1080/00295450.2018.1478590
Articles are hosted by Taylor and Francis Online.
Growing concerns over the impact of fossil fuels on climate change have driven efforts to find sources of energy with low emissions. In response, fluctuating renewable energy sources, such as solar and wind power, are growing to meet more of the electricity demand. However, maintaining reliable energy accessibility to the grid requires a stable, nonfluctuating source of power. Nuclear power plants (NPPs) provide nearly emissions-free, reliable energy to the grid (refer to “IPCC Fifth Assessment Report,” Intergovernmental Panel on Climate Change; https://www.ipcc.ch/report/ar5/). To best reduce reliance on fossil fuels while ensuring reliable energy generation and profitability, nuclear renewable hybrid energy systems (NRHESs) focus on tightly coupling renewable generation with a NPP by colocating the generation sources in an industrial park. The industrial park consists of at least the NPP, the renewable energy source, and some form of industrial process that consumes the energy not used by the grid. In this paper, we analyze the computational modeling approaches currently being pursued for NRHESs. We further investigate similarities between nuclear fuel cycle simulators (NFCSs) and NRHESs to determine how NRHES development can benefit from the development of NFCSs. This paper begins by reviewing past research on NRHESs to determine the necessary functionality of modeling software. After determining the necessary software capabilities for an NRHES model, we discuss the characteristics of a NFCS. The characteristics found common to both systems include desirability of a flexible modular design; open source; ability to be coupled to external pieces of software, including economic modeling, optimization methods, and sensitivity analysis; and results that are usable to technical and nontechnical people alike.