ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Vijay K. Veluri, Samiran Sengupta, Shaji Mammen, Sujay Bhattacharya
Nuclear Technology | Volume 204 | Number 2 | November 2018 | Pages 227-237
Technical Note | doi.org/10.1080/00295450.2018.1470437
Articles are hosted by Taylor and Francis Online.
Coolant activity in the primary coolant system and reactor pool in an open pool-type research reactor is very important in view of operational and radiological safety considerations. As pool water acts as the shielding medium to minimize the radiation dose at the top of the reactor pool, an estimation of the activities of radionuclides in pool water is essential to establish the safety of the operating personnel and researchers working at the reactor pool top. A system is provided to create a hot water layer (HWL) at the top of the pool by supplying water at a temperature more than that of the pool water so that the dose rate at the reactor pool top can be minimized. This HWL system helps in breaking the natural convection current of reactor pool water by maintaining a higher temperature at this layer so that high-density pool water below this layer cannot replace this low-density HWL. Therefore, pool water that is comparatively more radioactive will not be able to cross this HWL by convection. Hence, diffusion will be the only mechanism by which radioactivity can reach the pool top. So eliminating the convection current keeps the activity at this topmost layer of the pool at a minimum value. The estimation of the activity of the radioactive nuclides is required to assess the radiation field at different locations in the primary coolant loop for designing proper shielding requirements of the system. The radionuclides of interest are the activation products of aluminum (24Na, 27Mg, 28Al) and 41Ar. In this technical note, a transient code is presented for estimating the activity of radioactive nuclides in the coolant loop and reactor pool of a nuclear research reactor. The reduced activity level at the pool top is estimated considering the presence of the HWL at the top of the pool. It is observed that purification flow plays a major role on the activity level of radioactive nuclides in reactor pool water. The variation of the activity dose rate at the reactor pool top with purification flow is also discussed.