ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
DOE opens funding opportunity for HALEU transport packages
The Department of Energy announced November 19 that up to $16 million is available through a new High-Assay Low-Enrichment Transportation Package funding opportunity to research, develop, and acquire Nuclear Regulatory Commission licensing for transportation of HALEU—using new or modified packages.
Vijay K. Veluri, Samiran Sengupta, Shaji Mammen, Sujay Bhattacharya
Nuclear Technology | Volume 204 | Number 2 | November 2018 | Pages 227-237
Technical Note | doi.org/10.1080/00295450.2018.1470437
Articles are hosted by Taylor and Francis Online.
Coolant activity in the primary coolant system and reactor pool in an open pool-type research reactor is very important in view of operational and radiological safety considerations. As pool water acts as the shielding medium to minimize the radiation dose at the top of the reactor pool, an estimation of the activities of radionuclides in pool water is essential to establish the safety of the operating personnel and researchers working at the reactor pool top. A system is provided to create a hot water layer (HWL) at the top of the pool by supplying water at a temperature more than that of the pool water so that the dose rate at the reactor pool top can be minimized. This HWL system helps in breaking the natural convection current of reactor pool water by maintaining a higher temperature at this layer so that high-density pool water below this layer cannot replace this low-density HWL. Therefore, pool water that is comparatively more radioactive will not be able to cross this HWL by convection. Hence, diffusion will be the only mechanism by which radioactivity can reach the pool top. So eliminating the convection current keeps the activity at this topmost layer of the pool at a minimum value. The estimation of the activity of the radioactive nuclides is required to assess the radiation field at different locations in the primary coolant loop for designing proper shielding requirements of the system. The radionuclides of interest are the activation products of aluminum (24Na, 27Mg, 28Al) and 41Ar. In this technical note, a transient code is presented for estimating the activity of radioactive nuclides in the coolant loop and reactor pool of a nuclear research reactor. The reduced activity level at the pool top is estimated considering the presence of the HWL at the top of the pool. It is observed that purification flow plays a major role on the activity level of radioactive nuclides in reactor pool water. The variation of the activity dose rate at the reactor pool top with purification flow is also discussed.