ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
About Studsvik Scandpower
Studsvik Scandpower (SSP) is the leading global provider of vendor-independent, state-of-the-art nuclear fuel management software and world-class engineering services. SSP offers a full suite of software product offerings, training, and engineering services, to support operating utilities, fuel vendors, safety authorities, and research organizations around the world.
Yafen Liu, Rui Yan, Yang Zou, Xuzhong Kang, Ruimin Ji, Bo Zhou, Shihe Yu
Nuclear Technology | Volume 204 | Number 2 | November 2018 | Pages 203-212
Technical Paper | doi.org/10.1080/00295450.2018.1474703
Articles are hosted by Taylor and Francis Online.
Zero-power experiments are very important parts in design verification for all reactor types. In the 1970s, in China, at the Shanghai Institute of Applied Physics (then, Shanghai Institute of Nuclear Research), a Critical Experiment Device (cold) was established for research on the physics characteristics of the molten salt reactor (MSR), and a series of zero-power experiments was successfully performed; related experimental results were obtained later. The device consisted mainly of graphite moderator and powdered BeF2 – UF4 / ThF4 fuel and could achieve a maximum power of 200 W. The current work is focused on criticality properties with various core configurations and fuel arrangements of this device and the worths of the cadmium rods used in the device. Evaluations on the agreement of calculation results with experimental data showed good results. Discrepancies between the calculation results and the experimental data might be primarily caused by the simulated outermost fuel element positions not being exactly the same as the experimental arrangements and the unmodeled instruments used in the experiments. The findings in this work can be considered a step of verification of simulation methods and calculations for a cold MSR.