ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Li Sangang, Cheng Yi, Wang Lei, Yang Li, Liu Huan, Liao Jiawei, Zeng Liyang, Luo Yong, Wang Xiaoyu, Pei Qiuyan, Wang Jie
Nuclear Technology | Volume 204 | Number 2 | November 2018 | Pages 195-202
Technical Paper | doi.org/10.1080/00295450.2018.1474704
Articles are hosted by Taylor and Francis Online.
In situ radiation measurements are commonly used to detect radioactive material in luggage; at border control checkpoints; for in-field monitoring; during the illicit transfer of nuclear material; and at radioactive contamination sites, e.g., the Fukushima nuclear accident site. In considering the high brightness, fast decay time, and good energy resolution of cerium-doped lanthanum bromide [LaBr3(Ce)] scintillation detectors, this work conducted an experimental analysis aimed at evaluating the potential for applying LaBr3(Ce) detectors to in situ artificial radiation measurements. The effect of the intrinsic radiation of the LaBr3(Ce) detector was investigated. In addition, the intrinsic radiation contribution to the background radiation of the region of interest (ROI) under full-energy peaks for several artificial point sources and the minimum detectable activity (MDA) values of a 3 × 3-in. LaBr3(Ce) detector for several artificial radioactive point sources under unshielded (in the natural background) and well-shielded (in a low background chamber) conditions were calculated. The results indicate that the intrinsic radiation has a significant effect on the background radiation of the ROI especially when the full-energy peaks of several artificial point sources are located in the low-energy region or near 789 and 1400 keV. In addition, the MDAs (the measured time is 300 s) of the LaBr3(Ce) detector for 152Eu (121.78 keV), 133Ba (356 keV), 137Cs (661.7 keV), and 60Co (1332.5 keV) were 218.2, 63.6, 61.3, and 59.6 Bq, respectively, under unshielded conditions and 111.4, 39.1, 46.1, and 38.6 Bq, respectively, under well-shielded conditions. The intrinsic radiation also has some effects on the MDA of the LaBr3(Ce) detector, especially in the low-energy region. Thus, the drawback of its intrinsic radiation limits its application to in situ weak artificial radiation measurements, but LaBr3(Ce) detectors have the potential for use in medium- and high-radiation measurements due to the better energy resolution of these detectors than NaI(Tl) detectors.