ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Li Sangang, Cheng Yi, Wang Lei, Yang Li, Liu Huan, Liao Jiawei, Zeng Liyang, Luo Yong, Wang Xiaoyu, Pei Qiuyan, Wang Jie
Nuclear Technology | Volume 204 | Number 2 | November 2018 | Pages 195-202
Technical Paper | doi.org/10.1080/00295450.2018.1474704
Articles are hosted by Taylor and Francis Online.
In situ radiation measurements are commonly used to detect radioactive material in luggage; at border control checkpoints; for in-field monitoring; during the illicit transfer of nuclear material; and at radioactive contamination sites, e.g., the Fukushima nuclear accident site. In considering the high brightness, fast decay time, and good energy resolution of cerium-doped lanthanum bromide [LaBr3(Ce)] scintillation detectors, this work conducted an experimental analysis aimed at evaluating the potential for applying LaBr3(Ce) detectors to in situ artificial radiation measurements. The effect of the intrinsic radiation of the LaBr3(Ce) detector was investigated. In addition, the intrinsic radiation contribution to the background radiation of the region of interest (ROI) under full-energy peaks for several artificial point sources and the minimum detectable activity (MDA) values of a 3 × 3-in. LaBr3(Ce) detector for several artificial radioactive point sources under unshielded (in the natural background) and well-shielded (in a low background chamber) conditions were calculated. The results indicate that the intrinsic radiation has a significant effect on the background radiation of the ROI especially when the full-energy peaks of several artificial point sources are located in the low-energy region or near 789 and 1400 keV. In addition, the MDAs (the measured time is 300 s) of the LaBr3(Ce) detector for 152Eu (121.78 keV), 133Ba (356 keV), 137Cs (661.7 keV), and 60Co (1332.5 keV) were 218.2, 63.6, 61.3, and 59.6 Bq, respectively, under unshielded conditions and 111.4, 39.1, 46.1, and 38.6 Bq, respectively, under well-shielded conditions. The intrinsic radiation also has some effects on the MDA of the LaBr3(Ce) detector, especially in the low-energy region. Thus, the drawback of its intrinsic radiation limits its application to in situ weak artificial radiation measurements, but LaBr3(Ce) detectors have the potential for use in medium- and high-radiation measurements due to the better energy resolution of these detectors than NaI(Tl) detectors.