ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Helen Winberg-Wang
Nuclear Technology | Volume 204 | Number 2 | November 2018 | Pages 184-194
Technical Paper | doi.org/10.1080/00295450.2018.1469348
Articles are hosted by Taylor and Francis Online.
Diffusion experiments under stagnant conditions in a constant aperture and a variable aperture slot were made to obtain data for simulation of simultaneous flow and diffusion in fractures. This approach was necessitated by the need to avoid buoyancy-induced flow caused by density differences generated by the presence of a tracer. For this purpose, to avoid flow but negligibly influence diffusion the slots were filled with agar, which generates a 99% porous matrix, which negligibly affects diffusion but essentially stops flow. A simple photographic technique was used to follow diffusion and to determine the aperture distribution on the variable aperture slot. With the obtained data, numerical simulations were performed to illustrate how a solute diffuses from a source into the water seeping past. The results support the simple analytical solution that has been used to determine the escape of radionuclides from a damaged canister containing spent nuclear fuel in a geologic repository in fractured rock.