ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yoshitaka Naito, Kazuo Azekura
Nuclear Technology | Volume 204 | Number 1 | October 2018 | Pages 94-100
Technical Paper | doi.org/10.1080/00295450.2018.1469344
Articles are hosted by Taylor and Francis Online.
In this paper, a method is proposed to evaluate the extent of subcriticality of an accident-damaged nuclear reactor. With this method the activity ratio of two fission product (FP) rare gas nuclides and is measured. From the measured value, the value of the nuclides in the fuel region is estimated by correcting for the time lag incurred when the gases diffuse from the fuel region to the measuring point. A simple expression for an effective multiplication factor has been derived that uses the corrected -to- activity ratio and the -to- fission yield ratios of and but that does not require information on the amount or distribution of the fuel material, making the proposed method very simple. This method has the advantage that FP rare gases can easily leak from the reactor core through many openings and gaps, reaching germanium counters without reacting with other materials.