ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Zhang Yingzeng, Xiang Qingpei, Hao Fanhua, Guo Xiaofeng, Xiang Yongchun, Chu Chengsheng, Zeng Jun, Luo Fei, Ze Rende
Nuclear Technology | Volume 204 | Number 1 | October 2018 | Pages 83-93
Technical Paper | doi.org/10.1080/00295450.2018.1464839
Articles are hosted by Taylor and Francis Online.
Compton camera is a promising instrument for nuclear material imaging in arms control scenarios. In planning to build a Compton camera to detect the symmetry of shielded nuclear materials, the energy spectrum of gamma-rays escaping from the Steve Fetter Nuclear Warhead model is obtained using Monte Carlo simulation. Then, a point model is defined for our study. The proposed Compton camera uses a 5-cm × 5-cm × 1-mm double-sided silicon strips detector as the scattering detector and a segmented ϕ5.08 × 5.08-cm NaI(Tl) array as the absorbing detector. How high-energy gamma-rays impact low-energy characteristic gamma-ray imaging is studied. The result shows that high-energy gamma-rays will reduce the imaging accuracy and signal-to-noise ratio. The holistic angle resolution measured can reach 4.15 deg by all characteristic gamma-rays. The symmetry research result shows that the Compton camera can detect the symmetry property of a nuclear warhead with obvious symmetry or asymmetry.