ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Timothy Ault, Steven Krahn, Andrew Worrall, Allen Croff
Nuclear Technology | Volume 204 | Number 1 | October 2018 | Pages 41-58
Technical Paper | doi.org/10.1080/00295450.2018.1468702
Articles are hosted by Taylor and Francis Online.
Certain characteristics of heavy water reactors (HWRs), such as a more flexible neutron economy compared to light water (due to reduced absorptions in hydrogen), online refueling capability, and having a thermal neutron spectrum, make them potentially attractive for use with a thorium fuel cycle. Three options that combine HWRs with thorium-based fuels are considered in this paper: a Near-Term option with minimal advanced technology requirements, an Actinide Management option that incorporates the recycle of minor actinides (MAs), and a Thorium-Only option that uses two reactor stages to breed and consume 233U, respectively. Simplified, steady-state simulations and corresponding material flow analyses are used to elucidate the properties of these fuel cycle options. The Near-Term option begins with a low-enriched uranium oxide pressurized water reactor (PWR) that discharges spent nuclear fuel, from which uranium and plutonium are recovered to fabricate the driver fuel for an HWR that uses thorium oxide as a blanket fuel. This option uses 28% less natural uranium (NU) and sends 33% less plutonium to disposal than the conventional once-through uranium fuel cycle on an energy-normalized basis. The Actinide Management option also uses spent nuclear fuel from a PWR using enriched uranium oxide fuel (both a low- and high-enrichment variant are considered), but the uranium is recycled for reuse in the PWR while the plutonium and MAs are recycled and used in conjunction with thorium in an HWR with full recycle. Both enrichment variants of this option achieve a more than 95% reduction in transuranic actinide disposal rates compared to the once-through option and a more than 60% reduction compared to closed transuranic recycle in a uranium-plutonium–fueled sodium fast reactor. The Thorium-Only option breeds a surplus of 233U in a thorium-based HWR to supply fissile material to a high-temperature gas-cooled reactor, both of which recycle uranium and thorium. This option requires no NU and produces few transuranic actinides at steady state, although it would require a greater technology maturation effort than the other options studied. Collectively, the options considered in this study are intended to illustrate the range of operational missions that could be supported by fleets that integrate thorium and HWRs.