ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Timothy Ault, Steven Krahn, Andrew Worrall, Allen Croff
Nuclear Technology | Volume 204 | Number 1 | October 2018 | Pages 41-58
Technical Paper | doi.org/10.1080/00295450.2018.1468702
Articles are hosted by Taylor and Francis Online.
Certain characteristics of heavy water reactors (HWRs), such as a more flexible neutron economy compared to light water (due to reduced absorptions in hydrogen), online refueling capability, and having a thermal neutron spectrum, make them potentially attractive for use with a thorium fuel cycle. Three options that combine HWRs with thorium-based fuels are considered in this paper: a Near-Term option with minimal advanced technology requirements, an Actinide Management option that incorporates the recycle of minor actinides (MAs), and a Thorium-Only option that uses two reactor stages to breed and consume 233U, respectively. Simplified, steady-state simulations and corresponding material flow analyses are used to elucidate the properties of these fuel cycle options. The Near-Term option begins with a low-enriched uranium oxide pressurized water reactor (PWR) that discharges spent nuclear fuel, from which uranium and plutonium are recovered to fabricate the driver fuel for an HWR that uses thorium oxide as a blanket fuel. This option uses 28% less natural uranium (NU) and sends 33% less plutonium to disposal than the conventional once-through uranium fuel cycle on an energy-normalized basis. The Actinide Management option also uses spent nuclear fuel from a PWR using enriched uranium oxide fuel (both a low- and high-enrichment variant are considered), but the uranium is recycled for reuse in the PWR while the plutonium and MAs are recycled and used in conjunction with thorium in an HWR with full recycle. Both enrichment variants of this option achieve a more than 95% reduction in transuranic actinide disposal rates compared to the once-through option and a more than 60% reduction compared to closed transuranic recycle in a uranium-plutonium–fueled sodium fast reactor. The Thorium-Only option breeds a surplus of 233U in a thorium-based HWR to supply fissile material to a high-temperature gas-cooled reactor, both of which recycle uranium and thorium. This option requires no NU and produces few transuranic actinides at steady state, although it would require a greater technology maturation effort than the other options studied. Collectively, the options considered in this study are intended to illustrate the range of operational missions that could be supported by fleets that integrate thorium and HWRs.