ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Trump picks former N.Y. congressman for NNSA administrator
Williams
President Trump has selected Brandon Williams to head the Department of Energy’s National Nuclear Security Administration, pending confirmation by the U.S. Senate.
Williams is a former one-term congressman (R., N.Y.),from 2023 to the beginning of 2025. Prior to political office he served in the U.S. Navy. Williams’s run for office gained attention in 2022 when he defeated fellow navy veteran Francis Conole, a Democrat, but he lost the seat last November to Democrat John Mannion.
“I will be honored to lead the tremendous scientific and engineering talent at NNSA,” Williams said, thanking Trump, according to WSYR-TV in Syracuse, N.Y.
Antti Timperi
Nuclear Technology | Volume 204 | Number 1 | October 2018 | Pages 25-40
Technical Paper | doi.org/10.1080/00295450.2018.1461518
Articles are hosted by Taylor and Francis Online.
Large-eddy simulations (LESs) for two different T-junctions are performed for the prediction of thermal mixing loads on piping. In particular, the effects of wall treatment and mesh on temperature and wall heat flux fluctuations are studied. Wall-resolved LES shows good agreement with an experiment having adiabatic walls, but using wall functions shows deviations in root-mean-squared (RMS) temperatures and cross-stream mean velocities. The simulations show increases in peak RMS temperatures with local mesh refinement, and hence, too-low peak values are obtained with wall functions. The highest temperature fluctuations occur locally near the T-junction requiring a dense mesh. Wall functions are unable to capture high wall heat fluxes at a sharp corner, but otherwise, the maximum RMS value is close to a wall-resolved LES. For a T-junction having a round corner, higher RMS heat flux is obtained with wall functions compared to a wall-resolved case. Wall functions show lower instantaneous heat fluxes than wall-resolved LES, but the wall functions nonetheless result in higher pipe wall temperature fluctuations due to lower frequency content.