ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Antti Timperi
Nuclear Technology | Volume 204 | Number 1 | October 2018 | Pages 25-40
Technical Paper | doi.org/10.1080/00295450.2018.1461518
Articles are hosted by Taylor and Francis Online.
Large-eddy simulations (LESs) for two different T-junctions are performed for the prediction of thermal mixing loads on piping. In particular, the effects of wall treatment and mesh on temperature and wall heat flux fluctuations are studied. Wall-resolved LES shows good agreement with an experiment having adiabatic walls, but using wall functions shows deviations in root-mean-squared (RMS) temperatures and cross-stream mean velocities. The simulations show increases in peak RMS temperatures with local mesh refinement, and hence, too-low peak values are obtained with wall functions. The highest temperature fluctuations occur locally near the T-junction requiring a dense mesh. Wall functions are unable to capture high wall heat fluxes at a sharp corner, but otherwise, the maximum RMS value is close to a wall-resolved LES. For a T-junction having a round corner, higher RMS heat flux is obtained with wall functions compared to a wall-resolved case. Wall functions show lower instantaneous heat fluxes than wall-resolved LES, but the wall functions nonetheless result in higher pipe wall temperature fluctuations due to lower frequency content.