ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
J. Wang, H. J. Jo, M. L. Corradini
Nuclear Technology | Volume 204 | Number 1 | October 2018 | Pages 1-14
Technical Paper | doi.org/10.1080/00295450.2018.1464838
Articles are hosted by Taylor and Francis Online.
Accident-tolerant fuel (ATF) cladding materials have been a focus of recent work to provide a greater resistance to fuel degradation, oxidation, and melting in light water reactors for beyond-design accident scenarios such as a station blackout (SBO). In a previous study, researchers at The University of Wisconsin–Madison used the Surry Nuclear Plant as the pilot plant to examine the effect of ATF substitute clad materials with the short-term SBO as the postulated accident, examining the effect of a loss of auxiliary feedwater (AFW) with the MELCOR systems code. In this work, we examine the effect of recovery actions for an SBO in Surry as a follow-on topic. Specifically, we selected two kinds of core cladding materials (Zircaloy and FeCrAl), and then conducted comparative analysis of the effect of water injection; first with a delay in water injection start times into the reactor pressure vessel (RPV) and then with steam generator (SG) steam-side AFW end times. We find that alternative cladding materials (FeCrAl) can effectively delay fuel degradation and system failures for both water injection strategies. One finds that RPV water injection can prevent such severe accident effects if restored in a few hours into the SBO. Conversely, SG steam-side AFW flow with alternative cladding materials (FeCrAl) can delay the fuel degradation and system failure processes by hours. We mainly focus on analyzing the severe accident progression by different quantitative signals, such as the onset of rapid hydrogen production, hot-leg creep rupture failure, and core slump. Analyses are now underway to consider the effects of proposed coating materials on Zircaloy cladding and if such coatings can afford similar benefits.