ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Naphtali M. Mokgalapa, Tushar K. Ghosh, Robert V. Tompson, Sudarshan K. Loyalka
Nuclear Technology | Volume 203 | Number 3 | September 2018 | Pages 336-347
Technical Note | doi.org/10.1080/00295450.2018.1453729
Articles are hosted by Taylor and Francis Online.
Graphite dust is generated in the reactor core during normal operation of very high temperature reactors (VHTRs). This dust is transported throughout the reactor circuit and plates-out at different locations. The resuspension of graphite dust is believed to be a major contributor to the nuclear source term. The adhesion force is an important parameter governing the resuspension of the dust. The present study employed an atomic force microscope to measure the adhesive force between a reactor-grade graphite cluster “particle” and VHTR structural materials including Inconel 617 and Hastelloy X in an air glove box. Results for a reactor-grade graphite (MLRF-1 from SGL Carbon Ltd.) cluster particle interacting with Inconel 617 and Hastelloy X samples are reported under four different surface conditions including as received, and after 5, 10, and 15 min of oxidation. These forces were also predicted using the Johnson-Kendall-Roberts theoretical model with the estimate of the work of adhesion. The measured values depend on oxidation times but are in general a factor of about 20 lower than the predicted values. With surface roughness taken into account, the predicted values differ from the measured values by factors of 2 and 4 at the maximum for Hastelloy X and Inconel 617, respectively.