ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Naphtali M. Mokgalapa, Tushar K. Ghosh, Robert V. Tompson, Sudarshan K. Loyalka
Nuclear Technology | Volume 203 | Number 3 | September 2018 | Pages 336-347
Technical Note | doi.org/10.1080/00295450.2018.1453729
Articles are hosted by Taylor and Francis Online.
Graphite dust is generated in the reactor core during normal operation of very high temperature reactors (VHTRs). This dust is transported throughout the reactor circuit and plates-out at different locations. The resuspension of graphite dust is believed to be a major contributor to the nuclear source term. The adhesion force is an important parameter governing the resuspension of the dust. The present study employed an atomic force microscope to measure the adhesive force between a reactor-grade graphite cluster “particle” and VHTR structural materials including Inconel 617 and Hastelloy X in an air glove box. Results for a reactor-grade graphite (MLRF-1 from SGL Carbon Ltd.) cluster particle interacting with Inconel 617 and Hastelloy X samples are reported under four different surface conditions including as received, and after 5, 10, and 15 min of oxidation. These forces were also predicted using the Johnson-Kendall-Roberts theoretical model with the estimate of the work of adhesion. The measured values depend on oxidation times but are in general a factor of about 20 lower than the predicted values. With surface roughness taken into account, the predicted values differ from the measured values by factors of 2 and 4 at the maximum for Hastelloy X and Inconel 617, respectively.