ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Mathew W. Swinney, Douglas E. Peplow, Bruce W. Patton, Andrew D. Nicholson, Daniel E. Archer, Michael J. Willis
Nuclear Technology | Volume 203 | Number 3 | September 2018 | Pages 325-335
Technical Paper | doi.org/10.1080/00295450.2018.1458558
Articles are hosted by Taylor and Francis Online.
The detection of radioactive sources in an urban setting is greatly complicated by natural background radiation, which emanates from various materials including roadways, sidewalks, soil, and building exteriors. The method presented and demonstrated here represents an effort to characterize the concentration of naturally occurring radioactive material (NORM) in these types of materials. The location surveyed in this work was the Fort Indiantown Gap Combined Arms Collective Training Facility in Lebanon County, Pennsylvania. Over 70 measurements with a high-purity germanium detector were performed to ascertain the NORM concentrations present in the soil, asphalt, gravel, concrete, and walls found throughout the site. Monte Carlo radiation transport calculations were used to obtain detector responses for these various geometries and materials to convert these measurements into NORM concentration estimates. Finally, synthetic spectra were simulated using the predicted source terms and compared to actual measurements, showing acceptable agreement.