ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Donna Post Guillen, Alexander W. Abboud, Richard Pokorny, William C. Eaton, Derek Dixon, Kevin Fox, Albert A. Kruger
Nuclear Technology | Volume 203 | Number 3 | September 2018 | Pages 244-260
Technical Paper | doi.org/10.1080/00295450.2018.1458559
Articles are hosted by Taylor and Francis Online.
Integrated models are being developed to represent the physics occurring within the high-level and low-activity waste melters that will be used to vitrify legacy tank waste at the Hanford site. These models couple the melt pool, cold cap, and plenum region within a single computational domain. Validation of the models is essential to ensure the reliability of the numerical predictions of the operational melters. Experimental data from laboratory- and pilot-scale tests are thus being used to inform and validate various aspects of the melter model. This paper presents a tiered approach to model validation consisting of a series of progressively more complex test cases designed to model the physics occurring in the full-scale system. A hierarchical methodology has been developed to segregate and simplify the physical phenomena affecting the multiphase flow and heat transfer within a waste glass melter. Four hierarchical levels are defined in a validation pyramid and built up in levels of increasing complexity from unit problems to subsystem cases, to pilot-scale systems, and then to the full-scale system.