ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Alberto D. Mendoza España, Daniel Wojtaszek, Ashlea V. Colton, Blair P. Bromley
Nuclear Technology | Volume 203 | Number 3 | September 2018 | Pages 232-243
Technical Paper | doi.org/10.1080/00295450.2018.1447209
Articles are hosted by Taylor and Francis Online.
This study assesses the resource throughput and utilization of various thorium-based fuel concepts for near-term deployment in a pressure-tube heavy water reactor (PT-HWR). Such fuel concepts may be of interest to nations with thorium reserves that are interested in exploiting PT-HWRs. Given that nations with abundant thorium reserves and relatively small uranium reserves have an interest in reducing their dependence on natural uranium (NU) imports, the thorium-based fuel concepts are assessed in terms of their ability to conserve uranium resources and their impact on national income using an economic multiplier analysis. It is found that there are some thorium-augmented and thorium-based fuel concepts that are capable of both conserving resources and reducing reliance on importing NU, which would reduce the negative impact on national income from importing NU. A PT-HWR fuel bundle concept of 1.2 wt% 235U/U + Th (in a central fuel element and small amounts mixed into the outer 36 fuel elements) was found to be the most advantageous and attractive for implementation to improve nuclear fuel resource utilization.