ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
A. Nava Dominguez, Y. F. Rao
Nuclear Technology | Volume 203 | Number 2 | August 2018 | Pages 173-193
Technical Paper | doi.org/10.1080/00295450.2018.1442085
Articles are hosted by Taylor and Francis Online.
The Canadian Nuclear Laboratories (CNL) is developing the technologies to enable the use of thorium-based fuels in pressure tube–heavy water reactors (PT-HWRs). One of the key stages in developing the thorium-based fuels for PT-HWRs is the reactor core configuration. Currently at CNL there are 20 core configurations under investigation, which involve several types of thorium-based fuels that could be implemented in a 700-MW(electric)-class PT-HWR. Among these core configurations, four fuel bundle concepts are being considered: (1) the reference (or nominal) 37-element bundle; (2) a 37-element modified bundle, with the center element using a different fuel material; (3) a 35-element bundle; and (4) an 18-element internally cooled annular fuel bundle. This study presents the steady-state subchannel thermal-hydraulic assessment of the 20 core configurations under investigation. The hottest channel approach is used in this study, as it represents the upper limit of a feasible design. The axial and element power distributions used in the analysis correspond to those of the discharge burnup. Three mass flows are considered in this study: 13.5, 21, and 24 kg/s. Five parameters are used to evaluate the fuel channel/bundle performance, namely, minimum critical heat flux ratio, channel pressure drop, enthalpy distribution, void fraction, and core power.