ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. V. Arutyunyan, D. A. Pripachkin, K. S. Dolganov, S. V. Tsaun, S. N. Krasnoperov, D. V. Aron, D. Yu. Tomashchik, E. L. Serebryakov, S. V. Panchenko, A. V. Shikin
Nuclear Technology | Volume 203 | Number 1 | July 2018 | Pages 92-100
Technical Paper | doi.org/10.1080/00295450.2018.1432839
Articles are hosted by Taylor and Francis Online.
Specialized computer codes that model the behavior of aerosol particles propagating through a system of pipes or air ducts are used for assessment of aerosol particle deposition. Developed in Russia, SOCRAT/V3 is one such code. SOCRAT/V3 was used for modeling of the transport of radioactive aerosols containing the 137Cs radionuclide through an air duct during a real emergency. The obtained results of the modeling were used to estimate the exposure dose rate (EDR) of gamma radiation near the air duct. The results of the estimation were compared with data of real measurements of the gamma-radiation EDR along the air duct.
This paper proposes an approach to assessment of source term in the case of radioactive aerosol releases using (1) a thermophysical code (SOCRAT/V3), allowing modeling of physical processes that influence the formation and transport of aerosols, and (2) data of in situ measurements for the external EDR from contaminated air ducts.