ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
R. V. Arutyunyan, D. A. Pripachkin, K. S. Dolganov, S. V. Tsaun, S. N. Krasnoperov, D. V. Aron, D. Yu. Tomashchik, E. L. Serebryakov, S. V. Panchenko, A. V. Shikin
Nuclear Technology | Volume 203 | Number 1 | July 2018 | Pages 92-100
Technical Paper | doi.org/10.1080/00295450.2018.1432839
Articles are hosted by Taylor and Francis Online.
Specialized computer codes that model the behavior of aerosol particles propagating through a system of pipes or air ducts are used for assessment of aerosol particle deposition. Developed in Russia, SOCRAT/V3 is one such code. SOCRAT/V3 was used for modeling of the transport of radioactive aerosols containing the 137Cs radionuclide through an air duct during a real emergency. The obtained results of the modeling were used to estimate the exposure dose rate (EDR) of gamma radiation near the air duct. The results of the estimation were compared with data of real measurements of the gamma-radiation EDR along the air duct.
This paper proposes an approach to assessment of source term in the case of radioactive aerosol releases using (1) a thermophysical code (SOCRAT/V3), allowing modeling of physical processes that influence the formation and transport of aerosols, and (2) data of in situ measurements for the external EDR from contaminated air ducts.