ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Mélany Gouëllo, Jouni Hokkinen, Teemu Kärkelä, Ari Auvinen
Nuclear Technology | Volume 203 | Number 1 | July 2018 | Pages 85-91
Technical Paper | doi.org/10.1080/00295450.2018.1430463
Articles are hosted by Taylor and Francis Online.
This work is a contribution to the work performed in a paper on the understanding of the chemical reactions between cesium iodide and boron oxide in condensed phase, under conditions close to the ones prevailing in the primary circuit of a nuclear power plant in case of a severe accident. The thermal degradation of samples made from cesium iodide or cesium iodide and boron oxide mixtures has been investigated using the techniques of thermogravimetric analysis and differential thermal analysis at temperatures from 20°C to 1000°C. The boron-to-cesium molar ratio in the investigated mixture was fixed at about the value of 5 (B/Cs = 5). Apart from the dehydration of boric acid, evidence is presented for the formation of a vitreous compound at 360°C to 420°C, depending on the atmosphere composition.
Carrier gas composition also seemed to influence the behavior of the precursor mixture. While under air and argon, the recorded thermograms are similar. In the presence of argon/water vapor, a specific behavior and difference on reactivity is noticed, due to the adsorption of water from the carrier gas at the beginning of the process. It was also pointed out that the addition of water or oxygen delayed the glass formation process.