ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Youshi Zeng, Shengwei Wu, Wei Liu, Guanghua Wang, Nan Qian, Xiaoling Wu, Wenguan Liu, Yu Huang, Yuan Qian
Nuclear Technology | Volume 203 | Number 1 | July 2018 | Pages 48-57
Technical Paper | doi.org/10.1080/00295450.2018.1433408
Articles are hosted by Taylor and Francis Online.
The Thorium-Based Molten Salt Reactor (TMSR) has been highlighted for its safety, economy, and nuclear nonproliferation. A program for developing the TMSR system has been launched in Shanghai Institute of Applied Physics, Chinese Academy of Sciences. In the TMSR system, mixtures of LiF and BeF2, termed FLiBe, are proposed and used as the primary coolant salt, in which tritium is produced mainly by the neutron reactions of lithium. In the TMSR system, at high temperatures, tritium can permeate through metal walls to the surroundings, leading to a potential radiological hazard. Thus, tritium control becomes a major problem hindering the development of the TMSR system. Evaluation of the tritium distribution is necessary for tritium control in the TMSR system. In this study, the Tritium Transport Analysis Code (TTAC) has been developed for simulating the tritium behaviors in the TMSR system (hence, the code TMSR-TTAC), such as tritium chemical forms in coolant salts, tritium transport behaviors, and tritium distribution in the system. The model code is developed by the MATLAB/SIMULINK package, and it is based on the mass balance equations of the tritium-containing species and hydrogen. TMSR-TTAC is benchmarked with the molten salt reactor model, which is based on Molten Salt Reactor Experiment designs. The results show that TMSR-TTAC has the ability to calculate the tritium distribution in the TMSR system.