ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Nuclear workshop looks to the future after National Academies report
Following the release of a new report from the National Academies of Sciences, Engineering, and Medicine on the future of advanced nuclear reactors in the United States, experts in policymaking, finance, regulation, community engagement, and energy technologies convened a workshop recently on how a safe and secure foundation for the nuclear industry going forward can be laid.
Faranak Nekoogar, Farid Dowla
Nuclear Technology | Volume 202 | Number 2 | May-June 2018 | Pages 191-200
Technical Paper | doi.org/10.1080/00295450.2018.1452418
Articles are hosted by Taylor and Francis Online.
Wireless sensors can potentially play a significant role in safety, efficiency, and reliability of the instrumentation and control process in current and next generation nuclear power reactors. While conventional narrowband wireless sensors have shown a certain level of success in some nuclear power plants (NPPs), the radio frequency (RF) propagation challenges posed by the heavy metallic and cluttered environment of NPPs has prevented their widespread use in such operations. These challenges include RF wave propagation in harsh (reflective, absorptive, cluttered) environments, data security issues, and RF interference to and from other devices in the vicinity of a nuclear reactor core. In this paper, first we address how ultrawideband (UWB) RF technology can complement the narrowband (i.e., WiFi) solutions that have been used in some NPPs by providing an alternative solution in addressing the signal propagation issues in such electromagnetically harsh environments. Second, we discuss and present the UWB software simulation results on multipath harsh environments, and then address the data security issues. In the final sections of the paper, we present the experimental results of using UWB signaling in a representative harsh environment conducted at the Massachusetts Institute of Technology research reactor site. We plan to develop the UWB communications hardware based on the results of this paper and report on its performance in the field with emphasis on the security aspects of the system in a subsequent paper.