ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Faranak Nekoogar, Farid Dowla
Nuclear Technology | Volume 202 | Number 2 | May-June 2018 | Pages 191-200
Technical Paper | doi.org/10.1080/00295450.2018.1452418
Articles are hosted by Taylor and Francis Online.
Wireless sensors can potentially play a significant role in safety, efficiency, and reliability of the instrumentation and control process in current and next generation nuclear power reactors. While conventional narrowband wireless sensors have shown a certain level of success in some nuclear power plants (NPPs), the radio frequency (RF) propagation challenges posed by the heavy metallic and cluttered environment of NPPs has prevented their widespread use in such operations. These challenges include RF wave propagation in harsh (reflective, absorptive, cluttered) environments, data security issues, and RF interference to and from other devices in the vicinity of a nuclear reactor core. In this paper, first we address how ultrawideband (UWB) RF technology can complement the narrowband (i.e., WiFi) solutions that have been used in some NPPs by providing an alternative solution in addressing the signal propagation issues in such electromagnetically harsh environments. Second, we discuss and present the UWB software simulation results on multipath harsh environments, and then address the data security issues. In the final sections of the paper, we present the experimental results of using UWB signaling in a representative harsh environment conducted at the Massachusetts Institute of Technology research reactor site. We plan to develop the UWB communications hardware based on the results of this paper and report on its performance in the field with emphasis on the security aspects of the system in a subsequent paper.