ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
N. Dianne Bull Ezell, Chuck Britton, Nance Ericson, David Holcomb, M. J. Roberts, Seddik Djouadi, Richard Wood
Nuclear Technology | Volume 202 | Number 2 | May-June 2018 | Pages 173-179
Technical Paper | doi.org/10.1080/00295450.2018.1452498
Articles are hosted by Taylor and Francis Online.
Johnson noise thermometry is one of many important measurement techniques used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the minimal electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift-free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed in this paper. Spectral estimation is a key component in the signal processing algorithm used for EMI removal and temperature calculation. The cross-power spectral density is a key component in the Johnson noise temperature computation. Applying either technique requires the simple addition of electronics and signal processing to existing resistive thermometers. With minimal installation changes, the system discussed here can be installed on existing nuclear power plants. The Johnson noise system developed is tested at three locations: ORNL, Sandia National Laboratory, and the Tennessee Valley Authority’s Kingston Fossil Plant. Each of these locations enabled improvement on the EMI removal algorithm. The conclusions made from the results at each of these locations is discussed, as well as possible future work.