ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Panagiotis Zacharis, Graeme West, Gordon Dobie, Timothy Lardner, Anthony Gachagan
Nuclear Technology | Volume 202 | Number 2 | May-June 2018 | Pages 153-160
Technical Paper | doi.org/10.1080/00295450.2017.1421803
Articles are hosted by Taylor and Francis Online.
Pressure tubes are critical components of CANDU reactors and other pressurized heavy water–type reactors because they contain the nuclear fuel and the coolant. Manufacturing flaws as well as defects developed during in-service operation can lead to coolant leakage and can potentially damage the reactor. The current inspection process of these flaws is based on manually analyzing ultrasonic data received from multiple probes during planned, statutory outages. Recent advances in ultrasonic inspection tools enable the provision of high-resolution data of significantly large volumes. This highlights the need for an efficient autonomous signal analysis process. Typically, automation of ultrasonic inspection data analysis is approached by knowledge-based or supervised data-driven methods. This work proposes an unsupervised data-driven framework that requires no explicit rules or individually labeled signals. The framework follows a two-stage clustering procedure that utilizes the Density-Based Spatial Clustering of Applications with Noise density-based clustering algorithm and aims to provide decision support for the assessment of potential defects in a robust and consistent way. Nevertheless, verified defect dimensions are essential in order to assess the results and train the framework for unseen defects. Initial results of the implementation are presented and discussed, with the method showing promise as a means of assessing ultrasonic inspection data.