ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Houhua Xiong, Taosheng Li, Size Chen, Bing Hong, Chao Liu, FDS Team
Nuclear Technology | Volume 202 | Number 1 | April 2018 | Pages 94-100
Technical Paper | doi.org/10.1080/00295450.2017.1419780
Articles are hosted by Taylor and Francis Online.
In this paper, an online reactor neutron spectrum measurement method is presented. The basic theory of this method is based on the unfolding of few-channel data, in which three miniature ionization chambers are applied. The neutron spectrum can be unfolded with the count rates and response functions of the three detectors through an unfolding program. In order to investigate the feasibility of this method, simulation tests have been performed with the reference neutron spectra and neutron spectra from the China LEAd-based Reactor (CLEAR). The research results show that this method can provide an alternative means for an online neutron spectrum measurement in the reactors. This method is suitable to be applied in fast neutron reactors due to the miniature size of ionization chambers and fission threshold of 238U.