ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Houhua Xiong, Taosheng Li, Size Chen, Bing Hong, Chao Liu, FDS Team
Nuclear Technology | Volume 202 | Number 1 | April 2018 | Pages 94-100
Technical Paper | doi.org/10.1080/00295450.2017.1419780
Articles are hosted by Taylor and Francis Online.
In this paper, an online reactor neutron spectrum measurement method is presented. The basic theory of this method is based on the unfolding of few-channel data, in which three miniature ionization chambers are applied. The neutron spectrum can be unfolded with the count rates and response functions of the three detectors through an unfolding program. In order to investigate the feasibility of this method, simulation tests have been performed with the reference neutron spectra and neutron spectra from the China LEAd-based Reactor (CLEAR). The research results show that this method can provide an alternative means for an online neutron spectrum measurement in the reactors. This method is suitable to be applied in fast neutron reactors due to the miniature size of ionization chambers and fission threshold of 238U.