ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Mark D. DeHart, Zain Karriem, Michael A. Pope
Nuclear Technology | Volume 201 | Number 3 | March 2018 | Pages 247-266
Technical Paper | doi.org/10.1080/00295450.2017.1322451
Articles are hosted by Taylor and Francis Online.
A conceptual low-enrichment uranium (LEU) fuel design has been developed for the Advanced Test Reactor (ATR) at Idaho National Laboratory. The ATR is currently fueled with a high-enrichment fuel but is slated to be converted to LEU under programs led by the National Nuclear Security Administration of the U.S. Department of Energy. A conceptual LEU fuel design, the Enhanced LEU Fuel (ELF), has been developed assuming power peaking control through the use of variable fuel meat thicknesses and no use of burnable poison. In initial work, this design was shown to satisfy performance requirements for ATR operation. Following these design calculations, a safety analysis process was initiated to demonstrate that the ELF design would successfully meet safety limits for postulated accident conditions. Those calculations, performed using RELAP5 and ATR-SINDA, require physics analysis to provide spatial power distributions and kinetics parameters for various core operations configurations. This article describes the findings of the physics analysis and provides predictions for the behavior of a LEU-fueled version of ATR, and compares these to calculations of the performance of the current high-enrichment uranium fuel.