ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Mark D. DeHart, Zain Karriem, Michael A. Pope
Nuclear Technology | Volume 201 | Number 3 | March 2018 | Pages 247-266
Technical Paper | doi.org/10.1080/00295450.2017.1322451
Articles are hosted by Taylor and Francis Online.
A conceptual low-enrichment uranium (LEU) fuel design has been developed for the Advanced Test Reactor (ATR) at Idaho National Laboratory. The ATR is currently fueled with a high-enrichment fuel but is slated to be converted to LEU under programs led by the National Nuclear Security Administration of the U.S. Department of Energy. A conceptual LEU fuel design, the Enhanced LEU Fuel (ELF), has been developed assuming power peaking control through the use of variable fuel meat thicknesses and no use of burnable poison. In initial work, this design was shown to satisfy performance requirements for ATR operation. Following these design calculations, a safety analysis process was initiated to demonstrate that the ELF design would successfully meet safety limits for postulated accident conditions. Those calculations, performed using RELAP5 and ATR-SINDA, require physics analysis to provide spatial power distributions and kinetics parameters for various core operations configurations. This article describes the findings of the physics analysis and provides predictions for the behavior of a LEU-fueled version of ATR, and compares these to calculations of the performance of the current high-enrichment uranium fuel.