ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Mark D. DeHart, Zain Karriem, Michael A. Pope
Nuclear Technology | Volume 201 | Number 3 | March 2018 | Pages 247-266
Technical Paper | doi.org/10.1080/00295450.2017.1322451
Articles are hosted by Taylor and Francis Online.
A conceptual low-enrichment uranium (LEU) fuel design has been developed for the Advanced Test Reactor (ATR) at Idaho National Laboratory. The ATR is currently fueled with a high-enrichment fuel but is slated to be converted to LEU under programs led by the National Nuclear Security Administration of the U.S. Department of Energy. A conceptual LEU fuel design, the Enhanced LEU Fuel (ELF), has been developed assuming power peaking control through the use of variable fuel meat thicknesses and no use of burnable poison. In initial work, this design was shown to satisfy performance requirements for ATR operation. Following these design calculations, a safety analysis process was initiated to demonstrate that the ELF design would successfully meet safety limits for postulated accident conditions. Those calculations, performed using RELAP5 and ATR-SINDA, require physics analysis to provide spatial power distributions and kinetics parameters for various core operations configurations. This article describes the findings of the physics analysis and provides predictions for the behavior of a LEU-fueled version of ATR, and compares these to calculations of the performance of the current high-enrichment uranium fuel.