ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Samuel E. Bays, Cliff B. Davis, Periann A. Archibald
Nuclear Technology | Volume 201 | Number 3 | March 2018 | Pages 209-227
Technical Paper | doi.org/10.1080/00295450.2017.1415091
Articles are hosted by Taylor and Francis Online.
This work supports the acceptability of the two-dimensional deterministic transport code HELIOS to replace the legacy diffusion code PDQ for computing the peak-power performance parameters of the Advanced Test Reactor (ATR). The 95% Confidence Rule, commonly used in the commercial reactor sector, is explored to develop the so-called reliability factors that provide statistical confidence that the peak-power limits within the hottest location along a fuel plate, referred to as the hot stripe, will not be exceeded. Additionally, an alternative “legacy” methodology was explored that attempts to mimic the exact PDQ analysis process used for defining the peak-power limits. The legacy methodology involves interpolating power between regions at azimuthal boundaries subtending the regions of interest.
In order to apply the 95% Confidence Rule, a statistically significant calculation-to-measurement bias must first be established. Unlike the commercial world, where thousands of power observations can be collected every cycle using online flux-mapping instrumentation, the ATR power distribution must be measured during “depressurized” zero-power measurements using fission wires in polyethylene wands. In 2012, fission wire activation data were collected during a flux run in the Advanced Test Reactor Critical Facility. Also to improve statistical validity, archival data from ATR zero-power flux runs from 1977, 1986, and 1994 were digitized from scanned reports and used to create new benchmark models. Borrowing from least-squares adjustment methods commonly used for neutron activation spectroscopy, adjusted fission wire powers were calculated for all four data sets. The mean and standard deviation of the bias between a priori calculated and adjusted wire powers were then taken as the bias and uncertainty used in the 95% Confidence Rule.