ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Bing Hong, Chao Liu, Taosheng Li, Yongfeng Wang, Yanan Li, Mohamed Mazunga
Nuclear Technology | Volume 201 | Number 2 | February 2018 | Pages 174-179
Technical Paper | doi.org/10.1080/00295450.2017.1406270
Articles are hosted by Taylor and Francis Online.
Long counters are widely used for monitoring neutron fluence owing to their constant response in a wide energy range. In this study, an extended long counter named FDS-LC (FDS Long Counter), having a flat response over a wide neutron energy range from 1 keV to 20 MeV, was developed to monitor high neutron fluence. The geometry and basic structure of FDS-LC was optimized by using Monte Carlo simulations, and it consists of the BF3 thermal neutron counter, the inner and outer polyethylene moderators, borated polyethylene absorption layer, and chromium and lead metal neutron multiplier. The parameters such as the effective center, the energy response, and the angluar response of the FDS-LC were estimated using Super Monte Carlo code. The experimental validation of these parameters were performed by using 241Am-Be source and T(d, n)3He neutron source at the China Institute of Atomic Energy in Beijing. The results showed that the fluctuation of the response in the energy range from 1 keV to 20 MeV was less than 12% and the effective center positions were approximately equal to The comparison of the simulation and experimental results of the angular response function showed good agreement with a maximum deviation less than 15.7%.