ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Aaron Derouin, Alice Salway
Nuclear Technology | Volume 201 | Number 2 | February 2018 | Pages 165-173
Technical Paper | doi.org/10.1080/00295450.2017.1413922
Articles are hosted by Taylor and Francis Online.
After the Fukushima Daiichi accident, nuclear regulators around the world have required that power reactor licensees develop more extensive emergency mitigating responses and severe accident management provisions beyond the defense-in-depth measures for design-basis accidents previously in place. Workload assessments represent common validation techniques that are used to demonstrate that workers are able to perform tasks without unacceptable performance degradation. High workload is known to induce stress and fatigue and may severely diminish a worker’s capacity to perceive, recognize, and respond appropriately during emergency or unanticipated events, which may result in undesirable consequences. In estimating workload during emergency and severe accident scenarios, power reactor licensees tend to rely on subjective measures of workload, such as the NASA Task Load Index. Because of reported mismatches in the literature between subjective and physiologically derived estimates of workload, it is prudent to see what more can be done to improve the current state of practice in the context of emergency and severe accident conditions.
To improve confidence in workload estimates, it is advocated that the nuclear industry integrate physiologically based measures into current practices by making use of on-body or wearable physiological sensors. In this paper, an overview of three different approaches to the empirical measurement of workload is provided. The advantages of wearable physiological sensors are considered in the context of extreme environments and occupations, with tangible examples including heat stress and pupillometry. Suggestions for a consensus forum on workload are provided, and a research plan directed at improving the current practice of workload estimation is offered for consideration.