ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Mohammad Abdul Motalab, Woosong Kim, Yonghee Kim
Nuclear Technology | Volume 201 | Number 2 | February 2018 | Pages 122-137
Technical Paper | doi.org/10.1080/00295450.2017.1414541
Articles are hosted by Taylor and Francis Online.
This paper reports on the improvement of the power coefficient of reactivity (PCR) and minimization of the coolant void reactivity (CVR) of a CANDU6 reactor. A burnable absorber of Er2O3 (erbia) was mixed homogeneously with UO2 fuel in the central fuel element to maximize the Doppler broadening and minimize the CVR of the CANDU6 reactor. In this study, recovered uranium (RU) with 0.9 wt% 235U enrichment was utilized in the advanced CANFLEX fuel bundle instead of natural uranium (NU). First, the optimal loading of erbia was investigated through lattice-based analysis, and its impact on the lattice characteristics was examined. In particular, both the fuel Doppler effect and CVR were evaluated for the RU-loaded lattice. For a more reliable analysis, a three-dimensional (3-D) equilibrium core was determined based on the standard time-average methods for erbia-loaded CANDU6 cores using the Serpent-COREDAX/CANDU code system. The core analysis was based on a hybrid two-step method in which the lattice analysis was performed by the Serpent Monte Carlo code, and the 3-D whole-core analysis was done using a diffusion theory–based nodal code named COREDAX. For the derived equilibrium cores, the core performances were evaluated in terms of the fuel burnup and power profile. Additionally, the safety parameters, including the PCR and CVR, were evaluated for the equilibrium core conditions. The safety parameters of the 3-D whole core were compared with those obtained with simple lattice-based analysis. It was observed in the analysis that Er-loaded CANFLEX-RU fuel provides a 60% more negative fuel temperature coefficient than standard CANDU-NU fuel.