ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Karen Colins, Yu Liu, Liqian Li, Kiranpreet Birdee
Nuclear Technology | Volume 201 | Number 2 | February 2018 | Pages 113-121
Technical Paper | doi.org/10.1080/00295450.2017.1411718
Articles are hosted by Taylor and Francis Online.
Proximate to nuclear power plant severe accidents, sustained high levels of gamma radiative flux are perilous not only to human health but also to the functionality of conventional radiation-monitoring devices. Effective accident mitigation presents a significant challenge because the gamma radiation adversely affects the means by which it is measured. Deployments of large numbers of radiation-hardened monitoring devices, required to meet the demands of adequate system reliability and the large spatiotemporal scales associated with such accidents, are expected to be prohibitively expensive. As an affordable alternative, this paper proposes usage of a wireless sensor network (WSN) built with unshielded low-cost integrated circuits (ICs) acting as consumable proportional sensors of gamma radiation dose. Adverse responses of ICs to damaging gamma radiation dose can be characterized statistically, in controlled laboratory experiments. In subsequent field application, responses of individual ICs, transmitted over a WSN to a remote computer, can be translated into local dose measurements using correlations obtained via the laboratory characterization. Experiments to characterize adverse response to radiation dose were performed on multiple complementary metal-oxide-semiconductor–based electrically erasable programmable read-only memory devices in a Gammacell 220 Cobalt-60 Irradiation Unit (60Co source) at the Canadian Nuclear Laboratories. Details of the experiments, data analyses, and a small-scale prototype WSN are discussed in this paper. Outcomes of the experiments a nd analysis support the concept of using low-cost consumable ICs in a WSN to measure high levels of gamma radiation dose associated with nuclear power plant severe accidents.