ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Karen Colins, Yu Liu, Liqian Li, Kiranpreet Birdee
Nuclear Technology | Volume 201 | Number 2 | February 2018 | Pages 113-121
Technical Paper | doi.org/10.1080/00295450.2017.1411718
Articles are hosted by Taylor and Francis Online.
Proximate to nuclear power plant severe accidents, sustained high levels of gamma radiative flux are perilous not only to human health but also to the functionality of conventional radiation-monitoring devices. Effective accident mitigation presents a significant challenge because the gamma radiation adversely affects the means by which it is measured. Deployments of large numbers of radiation-hardened monitoring devices, required to meet the demands of adequate system reliability and the large spatiotemporal scales associated with such accidents, are expected to be prohibitively expensive. As an affordable alternative, this paper proposes usage of a wireless sensor network (WSN) built with unshielded low-cost integrated circuits (ICs) acting as consumable proportional sensors of gamma radiation dose. Adverse responses of ICs to damaging gamma radiation dose can be characterized statistically, in controlled laboratory experiments. In subsequent field application, responses of individual ICs, transmitted over a WSN to a remote computer, can be translated into local dose measurements using correlations obtained via the laboratory characterization. Experiments to characterize adverse response to radiation dose were performed on multiple complementary metal-oxide-semiconductor–based electrically erasable programmable read-only memory devices in a Gammacell 220 Cobalt-60 Irradiation Unit (60Co source) at the Canadian Nuclear Laboratories. Details of the experiments, data analyses, and a small-scale prototype WSN are discussed in this paper. Outcomes of the experiments a nd analysis support the concept of using low-cost consumable ICs in a WSN to measure high levels of gamma radiation dose associated with nuclear power plant severe accidents.