ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Olivier Bardon, Ludovic Garnier
Nuclear Technology | Volume 201 | Number 2 | February 2018 | Pages 103-112
Technical Paper | doi.org/10.1080/00295450.2017.1409054
Articles are hosted by Taylor and Francis Online.
Used nuclear fuel transportation casks are subjected to a permanent heat load that must be released in the air by passive dissipation as natural convection and infrared radiation. Because of the large size of the cask, natural convection operates in nonisothermal conditions at very high Rayleigh numbers where few experimental works exist and where computational fluid dynamics codes are often not representative. Thermal tests are then needed to estimate and check thermal designs. This work is a starting point of a research and development program that aims to improve the knowledge of natural convective heat transfer around casks, to explain the effect of a design parameter such as fins, and finally to propose and check improved solutions. In this work, we present the qualification of a mock-up that has been set up to measure the local heat convective coefficient of a fin-equipped cask in transport conditions. The geometry concerns short axial fins that are widely used on transportation/storage casks. The first results show a large variation of the heat convective coefficient along the cask from a constant low level at the bottom and then a linearly increasing level leading to a maximum value close to the top that is strongly temperature dependent.