ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Peter-W. Phlippen, Luc Schlömer, Michael Nekipelov, Roger Vallentin, Bernard Lukas, Stefan Palm, Thomas Mispagel
Nuclear Technology | Volume 201 | Number 1 | January 2018 | Pages 66-79
Technical Paper | doi.org/10.1080/00295450.2017.1399039
Articles are hosted by Taylor and Francis Online.
The decommissioning of nuclear power plants requires project planning and budgeting both during the project and in advance, as well as the secured provision of financial and human resources. When a facility is free from irradiated fuel, the reactor pressure vessel with the nuclear components and the biological shield determine the activity inventory of the facility, which almost exclusively consists of activated radionuclides located in the respective structures. Knowledge of the activity distribution and nuclide vectors of the involved components is of vital importance for decommissioning planning. In this context, the development of a computation procedure is described coupling the Monte Carlo method for the determination of neutron flux densities and spectra with a procedure to perform activation calculations for the determination of nuclide vectors. For this purpose, detailed knowledge of the material composition, particularly the trace-element concentrations of nitrogen and cobalt in steel and additionally of europium and cesium in concrete structures, considerably impacts the accuracy of the calculated activities. Extensive validation using data collected from various nuclear power plants to be decommissioned, such as nuclide activities, neutron flux densities, and neutron and gamma dose rates, demonstrates the reliability of the computed nuclide distributions showing ratios of computed-over-measured values of typically between 0.9 and 3. The practicality of the developed method and the convenient use of the results have already been demonstrated analyzing several German boiling water reactors and pressurized water reactors and developing packaging strategies based on the produced results.