ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. Krejčí, V. Vrtílková, J. Kabátová, A. Přibyl, P. Gajdoš, D. Rada, J. Šustr
Nuclear Technology | Volume 201 | Number 1 | January 2018 | Pages 52-65
Technical Paper | doi.org/10.1080/00295450.2017.1389595
Articles are hosted by Taylor and Francis Online.
High-temperature oxidation of WWER fuel cladding under loss-of-coolant accident conditions represents a significant problem and an issue of ongoing study. A study of oxidation kinetics under high-temperature steam oxidation was carried out on a sponge-based E110 cladding tube material in as-received state and exposed to a temperature range between 600°C and 1300°C. Metallographic evaluation of the samples was used to determine the analytical dependencies of the processes of the oxide layer and the oxygen stabilized alpha-zirconium layer formation.
The formation of this oxide layer and the layer under the oxide (oxygen stabilized alpha-zirconium) was usually considered to follow a parabolic rate law (e.g., Cathcart-Pawel for Zircaloy, and Solyany for iodide/electrolytic E110), however, the recently performed UJP PRAHA a.s. (UJP) experiments showed different kinetics for oxide layers in the whole temperature range between 600°C and 1300°C. The metallographic evaluation showed changing kinetics of oxide layer formation for several temperatures. Therefore, a new oxide layer formation kinetics, different from the parabolic law, was designed. The parabolic rate law was optimized for the oxygen stabilized alpha-zirconium, which is applicable in the temperature range between 950°C and 1300°C.
The UJP experimental database containing more than 1000 data values was compared with the newly developed UJP correlations and other available correlations for iodide/electrolytic E110 and Zircaloy alloys. The UJP correlation for weight gain kinetics was compared with experimental data from different laboratories. Finally, a statistical analysis of all tested correlations is provided.