ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Chi-Yong Park, Huinam Rhee, Ki-Wahn Ryu
Nuclear Technology | Volume 201 | Number 1 | January 2018 | Pages 23-40
Technical Paper | doi.org/10.1080/00295450.2017.1392396
Articles are hosted by Taylor and Francis Online.
This study proposes a methodology to estimate time-varying in situ wear coefficient between steam generator tubes in nuclear power plants and their supporting structures. Actual wear depth measurement data of steam generator tubes of OPR1000 (Optimized Power Reactor 1000 MW) plants in Korea were collected and analyzed to investigate the behavior of fretting wear. To determine the in situ wear coefficient, a mathematical expression was developed as a function of various parameters such as measured wear depth time history, work rate, contact geometry of the tube, and its support. These calculated in situ wear coefficients were then used to obtain wear depth history curves. Results obtained were then compared with actual field measurement data to show the validity of the proposed method. Many researchers have obtained wear coefficients under laboratory conditions. However, those coefficients cannot be considered as realistic factors for operating steam generators. The in situ wear coefficient proposed in this study is based on wear measurement data obtained from real operating steam generator tubes. Therefore, they can be used to precisely predict the wear depth of steam generator tubes, thus allowing safe and economical management of steam generators.