ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Chi-Yong Park, Huinam Rhee, Ki-Wahn Ryu
Nuclear Technology | Volume 201 | Number 1 | January 2018 | Pages 23-40
Technical Paper | doi.org/10.1080/00295450.2017.1392396
Articles are hosted by Taylor and Francis Online.
This study proposes a methodology to estimate time-varying in situ wear coefficient between steam generator tubes in nuclear power plants and their supporting structures. Actual wear depth measurement data of steam generator tubes of OPR1000 (Optimized Power Reactor 1000 MW) plants in Korea were collected and analyzed to investigate the behavior of fretting wear. To determine the in situ wear coefficient, a mathematical expression was developed as a function of various parameters such as measured wear depth time history, work rate, contact geometry of the tube, and its support. These calculated in situ wear coefficients were then used to obtain wear depth history curves. Results obtained were then compared with actual field measurement data to show the validity of the proposed method. Many researchers have obtained wear coefficients under laboratory conditions. However, those coefficients cannot be considered as realistic factors for operating steam generators. The in situ wear coefficient proposed in this study is based on wear measurement data obtained from real operating steam generator tubes. Therefore, they can be used to precisely predict the wear depth of steam generator tubes, thus allowing safe and economical management of steam generators.