ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Lars-Erik De Geer, Christer Persson, Henning Rodhe
Nuclear Technology | Volume 201 | Number 1 | January 2018 | Pages 11-22
Technical Paper | doi.org/10.1080/00295450.2017.1384269
Articles are hosted by Taylor and Francis Online.
The nature of two explosions that were witnessed within 3 s at the Chernobyl-4 reactor less than a minute after 21:23:00 UTC on April 25, 1986, have since then been the subject of sprawling interpretations. This paper renders the following hypothesis. The first explosion consisted of thermal neutron mediated nuclear explosions in one or rather a few fuel channels, which caused a jet of debris that reached an altitude of some 2500 to 3000 m. The second explosion would then have been the steam explosion most experts believe was the first one. The solid support for this new scenario rests on two pillars and three pieces of corroborating evidence. The first pillar is that a group at the V. G. Khlopin Radium Institute in then Leningrad on April 29, 1986, detected newly produced, or fresh, xenon fission products at Cherepovets, 370 km north of Moscow and far away from the major track of Chernobyl debris ejected by the steam explosion and subsequent fires. The second pillar is built on state-of-the-art meteorological dispersion calculations, which show that the fresh xenon signature observed at Cherepovets was only possible if the injection altitude of the fresh debris was considerably higher than that of the bulk reactor core releases that turned toward Scandinavia and central Europe. These two strong pieces of evidence are corroborated by what were manifest physical effects of a downward jet in the southeastern part of the reactor, by seismic measurements some 100 km west of the reactor, and by observations of a blue flash above the reactor a few seconds after the first explosion.