ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Jeremy M. Osborn, Evans D. Kitcher, Jonathan D. Burns, Charles M. Folden, III, Sunil S. Chirayath
Nuclear Technology | Volume 201 | Number 1 | January 2018 | Pages 1-10
Technical Paper | doi.org/10.1080/00295450.2017.1401442
Articles are hosted by Taylor and Francis Online.
A nuclear forensics methodology has been developed that is capable of source attribution of separated weapons-grade plutonium in case of an interdiction. The methodology utilizes plutonium and contaminant fission product isotopes within the separated plutonium sample to determine the characteristics (reactor parameters) of the interdicted material. The reactor parameters of interest include source reactor type, fuel irradiation burnup, and time since irradiation. The MCNPX-2.7 radiation transport code was used to model reactor cores and perform neutronics simulations to estimate the resulting isotopes of irradiated UO2 fuel. The simulation results were used to create a reactor-dependent library of irradiated fuel isotope ratio values as a function of fuel burnup and time since irradiation. Ratios of intra-element isotopes (fission product or actinide) are used as characteristics to determine a combination of reactor parameters of interest that could have produced the interdicted sample. The isotopes selected for the attribution methodology development were based upon the initial criteria of isotope production yield in fuel and half-life. Subsequently, intra-element isotope ratios were formed with the criterion that the ratio must have a functional dependence on at least one of the reactor parameters of interest. The developed methodology compares the values of reactor-dependent intra-element isotope ratios in the library developed to the same ratios of the interdicted sample. A maximum likelihood calculation methodology was utilized to perform the aforementioned multiple intra-element isotope ratio comparison to produce a single metric to depict the result of the comparison. The methodology can predict the reactor type, fuel burnup, and time since irradiation of the sample by selecting the array of reactor-dependent intra-element isotope ratios that provides the maximum likelihood value. The methodology was tested with intra-element ratios of pseudo interdicted sample data and found to be viable for source attribution.