ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jeremy M. Osborn, Evans D. Kitcher, Jonathan D. Burns, Charles M. Folden, III, Sunil S. Chirayath
Nuclear Technology | Volume 201 | Number 1 | January 2018 | Pages 1-10
Technical Paper | doi.org/10.1080/00295450.2017.1401442
Articles are hosted by Taylor and Francis Online.
A nuclear forensics methodology has been developed that is capable of source attribution of separated weapons-grade plutonium in case of an interdiction. The methodology utilizes plutonium and contaminant fission product isotopes within the separated plutonium sample to determine the characteristics (reactor parameters) of the interdicted material. The reactor parameters of interest include source reactor type, fuel irradiation burnup, and time since irradiation. The MCNPX-2.7 radiation transport code was used to model reactor cores and perform neutronics simulations to estimate the resulting isotopes of irradiated UO2 fuel. The simulation results were used to create a reactor-dependent library of irradiated fuel isotope ratio values as a function of fuel burnup and time since irradiation. Ratios of intra-element isotopes (fission product or actinide) are used as characteristics to determine a combination of reactor parameters of interest that could have produced the interdicted sample. The isotopes selected for the attribution methodology development were based upon the initial criteria of isotope production yield in fuel and half-life. Subsequently, intra-element isotope ratios were formed with the criterion that the ratio must have a functional dependence on at least one of the reactor parameters of interest. The developed methodology compares the values of reactor-dependent intra-element isotope ratios in the library developed to the same ratios of the interdicted sample. A maximum likelihood calculation methodology was utilized to perform the aforementioned multiple intra-element isotope ratio comparison to produce a single metric to depict the result of the comparison. The methodology can predict the reactor type, fuel burnup, and time since irradiation of the sample by selecting the array of reactor-dependent intra-element isotope ratios that provides the maximum likelihood value. The methodology was tested with intra-element ratios of pseudo interdicted sample data and found to be viable for source attribution.