ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Jihyeon Lee, Kwang Soon Ha, Jungho Hwang
Nuclear Technology | Volume 200 | Number 3 | December 2017 | Pages 241-249
Technical Paper | doi.org/10.1080/00295450.2017.1372984
Articles are hosted by Taylor and Francis Online.
Because most radioactive materials that can escape from a nuclear power plant during a severe accident are expected to be in the form of aerosols, the installation of a filtered containment venting system (FCVS) will be effective to mitigate the risks caused by radioactive aerosols. Aerosol size is a parameter important to the design requirements of an FCVS because the collection efficiency of the venting system depends on the size of the aerosol. In this study, the size distribution change of aerosols by condensation was calculated by using the moment method. Sodium chloride was used as nuclei that underwent condensational growth, and Di-Ethyl-Hexyl-Sebacate (DEHS) was used as a vapor that participated in condensational growth. Then, a condensation experiment was conducted to verify the results calculated by the moment method. However, in an actual severe accident, water vapor in the containment would condense on particles. Therefore, after model verification, calculation was performed with water vapor as the condensation vapor to predict the condensation scenario under a severe accident. This paper reports that the aerosol condensation model based on the moment method can be an auxiliary tool in an existing aerosol modeling program to estimate the particle size distribution change during a severe accident.