ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Jihyeon Lee, Kwang Soon Ha, Jungho Hwang
Nuclear Technology | Volume 200 | Number 3 | December 2017 | Pages 241-249
Technical Paper | doi.org/10.1080/00295450.2017.1372984
Articles are hosted by Taylor and Francis Online.
Because most radioactive materials that can escape from a nuclear power plant during a severe accident are expected to be in the form of aerosols, the installation of a filtered containment venting system (FCVS) will be effective to mitigate the risks caused by radioactive aerosols. Aerosol size is a parameter important to the design requirements of an FCVS because the collection efficiency of the venting system depends on the size of the aerosol. In this study, the size distribution change of aerosols by condensation was calculated by using the moment method. Sodium chloride was used as nuclei that underwent condensational growth, and Di-Ethyl-Hexyl-Sebacate (DEHS) was used as a vapor that participated in condensational growth. Then, a condensation experiment was conducted to verify the results calculated by the moment method. However, in an actual severe accident, water vapor in the containment would condense on particles. Therefore, after model verification, calculation was performed with water vapor as the condensation vapor to predict the condensation scenario under a severe accident. This paper reports that the aerosol condensation model based on the moment method can be an auxiliary tool in an existing aerosol modeling program to estimate the particle size distribution change during a severe accident.