ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Jihyeon Lee, Kwang Soon Ha, Jungho Hwang
Nuclear Technology | Volume 200 | Number 3 | December 2017 | Pages 241-249
Technical Paper | doi.org/10.1080/00295450.2017.1372984
Articles are hosted by Taylor and Francis Online.
Because most radioactive materials that can escape from a nuclear power plant during a severe accident are expected to be in the form of aerosols, the installation of a filtered containment venting system (FCVS) will be effective to mitigate the risks caused by radioactive aerosols. Aerosol size is a parameter important to the design requirements of an FCVS because the collection efficiency of the venting system depends on the size of the aerosol. In this study, the size distribution change of aerosols by condensation was calculated by using the moment method. Sodium chloride was used as nuclei that underwent condensational growth, and Di-Ethyl-Hexyl-Sebacate (DEHS) was used as a vapor that participated in condensational growth. Then, a condensation experiment was conducted to verify the results calculated by the moment method. However, in an actual severe accident, water vapor in the containment would condense on particles. Therefore, after model verification, calculation was performed with water vapor as the condensation vapor to predict the condensation scenario under a severe accident. This paper reports that the aerosol condensation model based on the moment method can be an auxiliary tool in an existing aerosol modeling program to estimate the particle size distribution change during a severe accident.