ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. C. Bauer
Nuclear Technology | Volume 200 | Number 2 | November 2017 | Pages 177-188
Technical Note | doi.org/10.1080/00295450.2017.1360715
Articles are hosted by Taylor and Francis Online.
Computational fluid dynamics (CFD) tools are becoming more widely used in thermal-hydraulic (T/H) and plant analyses due to advances in computational capability, data storage, and speed. However, to date, most CFD studies are ad hoc in nature with little emphasis on building links between and among CFD studies and CFD users. Thus, CFD codes have not yet been effectively leveraged as design tools within the T/H and nuclear applications communities due to lack of a comprehensive and rigorous approach to both verification and validation and uncertainty propagation. Consequentially, CFD is generally relegated to limited diagnostic use or as an adjunct to conventional lumped-parameter codes that often are based on limited testing and use conservative bounding factors applied to the needed design calculations.
Because significant technical progress and development of CFD have occurred over the last decade, the potential now exists to move the use of CFD into the mainstream of analysis tools to address design, operational, and regulatory issues for complex hydraulic systems. This potential can serve as a basis upon which to develop CFD for use in an integrated design-by-simulation (IDS) environment. The CFD methodology to provide this rigor is identified as predictive-CFD (P-CFD) in this technical note.
In the P-CFD/IDS methodology, synergy and consensus will be obtained through more rigorous validation of the underlying physics phenomena of each analysis objective through use of an extensive database of validation-level tests (VLTs) by many universities and laboratories. This approach logically suggests the creation of a national P-CFD database to contain these VLT data sets for general practitioner access. Thus, the underlying physics is a building block for multiple system objectives whose phenomena require those physics behaviors for the needed assessments. By using the P-CFD/IDS methodology, CFD methods can be made consistent, credible, and reproducible.
Extensive references have been included to provide the status of the underlying background that supports P-CFD/IDS development. The path outlined is fully practical but difficult. This technical note is written to show a framework by which a validated CFD study for a given hydraulic objective can be prepared and used for the analyses of complex hydraulic systems to support design conclusions.