ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Stephanie H. Bruffey, Robert T. Jubin
Nuclear Technology | Volume 200 | Number 2 | November 2017 | Pages 159-169
Technical Paper | doi.org/10.1080/00295450.2017.1369802
Articles are hosted by Taylor and Francis Online.
In 2010, the Idaho National Laboratory was in the process of removing legacy materials from one of their hot cells. As part of this clean-out effort, five metal capsules and some loose zeolite material were identified as test specimens produced in the late 1970s as part of research and development (R&D) conducted under the Airborne Waste Management Program. This specific R&D effort examined the encapsulation of 85Kr within a collapsed zeolite structure for use as a potential waste form for long-term storage. These reclaimed capsules and loose material presented a unique opportunity to study a potential 85Kr waste form after three half-lives have elapsed. Of the five capsules, the walls of two had been cut or breached during previous experiments. The aim of this study was to produce mounted samples from the two breached samples that could be handled with minimal shielding, assess the physical condition and chemical composition of the capsule walls for each breached sample, and determine if any loss of capsule wall integrity was directly attributable to rubidium, the decay product of 85Kr. The sectioning and mounting of the breached capsules was successfully completed. The capsule wall of these 85Kr legacy waste form capsules was examined by optical microscopy and by scanning electron microscopy and energy-dispersive spectroscopy. Substantial corrosion was observed throughout each capsule wall. The bulk of the capsule wall was identified as carbon steel, while the weld material used in capsule manufacture and/or sealing was identified as stainless steel. A notable observation was that the material used for Kr encapsulation was found adhered to the walls of each capsule and had a chemical composition consistent with zeolite minerals. The results of studies on the retention of Kr by the encapsulation material will be discussed in a subsequent paper. Three legacy capsules remain in storage at Oak Ridge National Laboratory and may not have been breached. These represent an exciting opportunity for continued 85Kr waste form studies and will provide more indication as to whether the corrosion observed in Capsules 2 and 5 is attributable to the breach of the capsule, to Rb-induced corrosion, or to another cause.