ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Hangbok Choi, Robert W. Schleicher
Nuclear Technology | Volume 200 | Number 2 | November 2017 | Pages 106-124
Technical Paper | doi.org/10.1080/00295450.2017.1364064
Articles are hosted by Taylor and Francis Online.
The Energy Multiplier Module (EM2) is a helium-cooled fast reactor with a core outlet temperature of 850°C. It is designed as a modular, grid-capable power source with a net unit output of 265 MWe. The reactor employs a convert-and-burn core design that converts fertile isotopes to fissile and burns them in situ over a 30-year core life. The reactor is sited in a below-grade sealed containment. It uses passive safety methods for heat removal and reactivity control to protect the integrity of the fuel, reactor vessel, and containment. The plant also incorporates a below-grade, passively cooled spent fuel storage facility with capacity for 60 years of full-power operation. EM2 employs a direct closed-cycle gas turbine power conversion unit (PCU) with an organic Rankine bottoming cycle for 53% net power conversion efficiency assuming evaporative cooling. The high-power conversion efficiency and long-burn fuel cycle reduce the electricity cost by 35% when compared with the conventional light water reactor.
The conceptual design has been conducted for the EM2 plant with focus on the reactor, fuel, and safety system designs. A detailed model of the passive direct reactor auxiliary cooling system was created to demonstrate functionality for selected design-basis accidents. The bench-scale fuel development campaign demonstrated high-quality uranium carbide pellet fabrication as well as β-SiC composite cladding and SiC-joining technologies. Irradiation tests of reactor materials are also being conducted. The PCU variable-speed generator mechanical design was validated with operational testing of its novel rotor at speeds >13 000 rpm. The design of the turbo-compressor with active magnetic bearings continues. A large cost database and financial model have been constructed for use as a key driver for the design to be economically competitive with competing generating technologies after 2030.