ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Hangbok Choi, Robert W. Schleicher
Nuclear Technology | Volume 200 | Number 2 | November 2017 | Pages 106-124
Technical Paper | doi.org/10.1080/00295450.2017.1364064
Articles are hosted by Taylor and Francis Online.
The Energy Multiplier Module (EM2) is a helium-cooled fast reactor with a core outlet temperature of 850°C. It is designed as a modular, grid-capable power source with a net unit output of 265 MWe. The reactor employs a convert-and-burn core design that converts fertile isotopes to fissile and burns them in situ over a 30-year core life. The reactor is sited in a below-grade sealed containment. It uses passive safety methods for heat removal and reactivity control to protect the integrity of the fuel, reactor vessel, and containment. The plant also incorporates a below-grade, passively cooled spent fuel storage facility with capacity for 60 years of full-power operation. EM2 employs a direct closed-cycle gas turbine power conversion unit (PCU) with an organic Rankine bottoming cycle for 53% net power conversion efficiency assuming evaporative cooling. The high-power conversion efficiency and long-burn fuel cycle reduce the electricity cost by 35% when compared with the conventional light water reactor.
The conceptual design has been conducted for the EM2 plant with focus on the reactor, fuel, and safety system designs. A detailed model of the passive direct reactor auxiliary cooling system was created to demonstrate functionality for selected design-basis accidents. The bench-scale fuel development campaign demonstrated high-quality uranium carbide pellet fabrication as well as β-SiC composite cladding and SiC-joining technologies. Irradiation tests of reactor materials are also being conducted. The PCU variable-speed generator mechanical design was validated with operational testing of its novel rotor at speeds >13 000 rpm. The design of the turbo-compressor with active magnetic bearings continues. A large cost database and financial model have been constructed for use as a key driver for the design to be economically competitive with competing generating technologies after 2030.