ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. Boffy, J. Beaucour, F. J. Bermejo
Nuclear Technology | Volume 200 | Number 1 | October 2017 | Pages 54-65
Technical Paper | doi.org/10.1080/00295450.2017.1341780
Articles are hosted by Taylor and Francis Online.
This paper describes the design, construction, and test of a setup able to make thermal neutron irradiation at grazing angles of incidence on a sample lying inside an isotropic high neutron flux. Such characteristics are deemed to be very interesting for the future research facilities that will provide intense neutron beams. Indeed, collimated beams can be found easily in neutron sources around the globe, but the new equipment enables use of a relatively intense flux that will allow fast testing of materials. The aim of this study is the understanding of the mechanical stability of structural materials used for the manufacturing of neutron guides such as borosilicate glasses. This new equipment proved the unstability of some of these glasses to thermal neutron irradiation when exposed above a given fluence.